Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development
- 318 Downloads
- 1 Citations
Abstract
The presence of poorly sited wind farms raises concerns for wildlife, including birds of prey. Therefore, there is a need to extend the knowledge of the potential human–wildlife conflicts associated with wind energy. Here, we report on the movements and habitat use of post-fledging satellite-tagged white-tailed eagles in Finland, where wind-energy development is expected to increase in the near future. In particular, we examine the probability of a fledgling approaching a hypothetical turbine that is placed at different distances from the nest. We found that this probability is high at short distances but considerably decreases with increasing distances to the nest. A utilisation–availability analysis showed that the coast was the preferred habitat. We argue that avoiding construction between active nests and the shoreline, as well as adopting the currently 2-km buffer zone for turbine deployment, can avoid or minimise potential impacts on post-fledging white-tailed eagles.
Keywords
Wind energy Post-fledging White-tailed eagle Movements Habitat use ConservationNotes
Acknowledgments
We are grateful to the WWF White-Tailed Eagle Working Group, which financed data collection and whose volunteers fitted the satellite transmitters, and to Pertti Saurola for managing the data and giving valuable feedback. Otso Ovaskainen was supported by the Academy of Finland (Grant n. 250444); Fabio Balotari-Chiebao was funded by CAPES, an agency under the Ministry of Education of Brazil; Asko Ijäs and Alexandre Villers were funded by the European Regional Development Fund via the ELY Centre for Southwest Finland (Project n. A31454).
References
- Barrios, L., and A. Rodríguez. 2004. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. Journal of Applied Ecology 41: 72–81.CrossRefGoogle Scholar
- Bevanger, K., F. Berntsen, S. Clausen, E. L. Dahl, Ø. Flagstad, A. Follestad, D. Halley, F. Hanssen, et al. 2010. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (Bird-Wind). NINA Report 620, Trondheim, Norway.Google Scholar
- Bevanger, K., F. Berntsen, S. Clausen, E. L. Dahl, Ø. Flagstad, A. Follestad, D. Halley, F. Hanssen, et al. 2009. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (Bird-Wind). NINA Report 505, Trondheim, Norway.Google Scholar
- BirdLife International. 2013. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/.
- Bivand, R., and N. Lewin-Koh. 2013. maptools: Tools for reading and handling spatial objects. R Package Version 0.8-27.Google Scholar
- Bivand, R. S., and C. Rundel. 2013. rgeos: Interface to geometry engine—Open Source (GEOS). R Package Version 0.2-13.Google Scholar
- Calenge, C. 2006. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516–519.CrossRefGoogle Scholar
- Clobert, J., M. Baguette, T.G. Benton, and J.M. Bullock. 2012. Dispersal ecology and evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
- Corman, A.-M., and S. Garthe. 2014. What flight heights tell us about foraging and potential conflicts with wind farms: a case study in Lesser Black-backed Gulls (Larus fuscus). Journal of Ornithology 155: 1037–1043.CrossRefGoogle Scholar
- Cramp, S., and K.E.L. Simmons. 1980. Handbook of the Birds of Europe, the Middle East and North Africa: Hawks to Bustards. Oxford: Oxford University Press.Google Scholar
- Dahl, E.L., K. Bevanger, T. Nygård, E. Røskaft, and B.G. Stokke. 2012. Reduced breeding success in white-tailed eagles at Smøla windfarm, western Norway, is caused by mortality and displacement. Biological Conservation 145: 79–85.CrossRefGoogle Scholar
- de Lucas, M., M. Ferrer, M.J. Bechard, and A.R. Muñoz. 2012. Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures. Biological Conservation 147: 184–189.CrossRefGoogle Scholar
- Drewitt, A.L., and R.H.W. Langston. 2008. Collision effects of wind-power generators and other obstacles on birds. Annals of the New York Academy of Sciences 1134: 233–266.CrossRefGoogle Scholar
- Drewitt, A.L., and R.H.W. Langston. 2006. Assessing the impacts of wind farms on birds. Ibis 148: 29–42.CrossRefGoogle Scholar
- Duerr, A.E., T.A. Miller, M. Lanzone, D. Brandes, J. Cooper, K. O’Malley, C. Maisonneuve, J. Tremblay, and T. Katzner. 2012. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes. PLoS One 7: e35548.CrossRefGoogle Scholar
- Finnish Wind Association. 2015. Tuulivoimalaitokset ja tuulivoimahankkeet Suomessa. http://www.tuulivoimayhdistys.fi/hankelista.
- Gove, B., R.H.W. Langston, A. McCluskie, J.D. Pullan, I. Scrase. 2013. Wind farms and birds: an updated analysis of the effects of wind farms on birds, and best practice guidance on integrated planning and impact assessment (Report prepared by BirdLife International on behalf of the Bern Convention). Convention on the conservation of European wildlife and natural habitats: Bern Convention Bureau Meeting, Strasbourg, France.Google Scholar
- Hardey, J., H. Crick, C. Wernham, H. Riley, B. Etheridge, and D. Thompson. 2013. Raptors: A field guide to survey and monitoring. Norfolk: TSO (The Stationery Office).Google Scholar
- Herrmann, C., O. Krone, T. Stjernberg, B. Helander. 2011. Population Development of Baltic Bird Species: White-tailed Sea Eagle (Haliaeetus albicilla). HELCOM Baltic Sea Environment Fact Sheet 2011, Kotka, Finland.Google Scholar
- Hijmans, R.J., and Etten, J.V. 2013. Raster: Geographic data analysis and modeling, R package version 2.0-41.Google Scholar
- International Energy Agency. 2013. Technology Roadmap: Wind Energy, Paris, France.Google Scholar
- Katzner, T.E., D. Brandes, T. Miller, M. Lanzone, C. Maisonneuve, J.A. Tremblay, R. Mulvihill, and G.T. Merovich. 2012. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. Journal of Applied Ecology 49: 1178–1186.CrossRefGoogle Scholar
- Kenward, R.E. 2001. A manual for wildlife radio tagging. London: Academic Press.Google Scholar
- Krone, O., A. Berger, and R. Schulte. 2008. Recording movement and activity pattern of a White-tailed Sea Eagle (Haliaeetus albicilla) by a GPS datalogger. Journal of Ornithology 150: 273–280.CrossRefGoogle Scholar
- Krone, O., M. Nadjafzadeh, and A. Berger. 2013. White-tailed Sea Eagles (Haliaeetus albicilla) defend small home ranges in north-east Germany throughout the year. Journal of Ornithology 154: 827–835.CrossRefGoogle Scholar
- Krone, O., and C. Scharnweber. 2003. Two white-tailed sea eagles (Haliaeetus albicilla) collide with wind generators in northern Germany. Journal of Raptor Research 37(2): 174–176.Google Scholar
- Kuvlesky, W.P., L.A. Brennan, M.L. Morrison, K.K. Boydston, B.M. Ballard, and F.C. Bryant. 2007. Wind energy development and wildlife conservation: Challenges and opportunities. The Journal of Wildlife Management 71: 2487–2498.CrossRefGoogle Scholar
- May, R., T. Nygård, E.L. Dahl, and K. Bevanger. 2013. Habitat utilization in white-tailed eagles (Haliaeetus albicilla) and the displacement impact of the Smøla wind-power plant. Wildlife Society Bulletin 37: 75–83.CrossRefGoogle Scholar
- May, R., T. Nygård, E. L. Dahl, O. Reitan, and K. Bevanger. 2011. Collision risk in white-tailed eagles: Modelling kernel-based collision risk using satellite telemetry data in Smøla wind-power plant. NINA Report 692, Trondheim, Norway.Google Scholar
- Mikkola-Roos, M., J. Tiainen, A. Below, M. Hario, A. Lehikoinen, E. Lehikoinen, T. Lehtiniemi, A. Rajasärkkä, et al. 2010. Birds. In The 2010 red list of Finnish species, ed. P. Rassi, E. Hyvärinen, A. Juslén, and I. Mannerkoski, 320–331. Helsinki: Ympäristöministeriö & Suomen ympäristökeskus.Google Scholar
- National Energy and Climate Strategy. 2013. Government Report to Parliament on 20 March 2013.Google Scholar
- Neu, C.W., C.R. Byers, and J.M. Peek. 1974. A Technique for Analysis of Utilization-Availability Data. The Journal of Wildlife Management 38: 541–545.CrossRefGoogle Scholar
- Pearce-Higgins, J.W., L. Stephen, R.H.W. Langston, I.P. Bainbridge, and R. Bullman. 2009. The distribution of breeding birds around upland wind farms. Journal of Applied Ecology 46: 1323–1331.Google Scholar
- Reid, T., S. Krüger, D.P. Whitfield, and A. Amar. 2015. Using spatial analyses of bearded vulture movements in southern Africa to inform wind turbine placement. Journal of Applied Ecology 52: 881–892.CrossRefGoogle Scholar
- Schaub, M. 2012. Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biological Conservation 155: 111–118.CrossRefGoogle Scholar
- Shiraki, S. 2002. Post-fledging movements and foraging habitats of immature white-tailed sea eagles in the Nemuro Region, Hokkaido, Japan. Journal of Raptor Research 36: 220–224.Google Scholar
- Smallwood, K.S., and C. Thelander. 2008. Bird mortality in the Altamont Pass Wind Resource Area, California. The Journal of Wildlife Management 72: 215–223.CrossRefGoogle Scholar
- Ueta, M., Y. Fukuda, R. Takada. 2010. Difference in flight behavior between White-tailed and Steller’s Sea Eagle in Hokkaido. Bird Research 6: A43-A52 (in Japanese, English summary).Google Scholar
- Watson, J.W., A.A. Duff, and R.W. Davies. 2014. Home range and resource selection by GPS-monitored adult golden eagles in the Columbia Plateau Ecoregion: Implications for wind power development. The Journal of Wildlife Management 78: 1012–1021.CrossRefGoogle Scholar
- Whitfield, D.P., A. Douse, R.J. Evans, J. Grant, J. Love, D.R.A. McLeod, R. Reid, and J.D. Wilson. 2009a. Natal and breeding dispersal in a reintroduced population of white-tailed eagles Haliaeetus albicilla. Bird Study 56: 177–186.CrossRefGoogle Scholar
- Whitfield, D.P., K. Duffy, and D.R.A. McLeod. 2009b. Juvenile dispersal of white-tailed eagles in Western Scotland. Journal of Raptor Research 43: 110–120.CrossRefGoogle Scholar
- Wickham, H. 2009. ggplot2: Elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
- World Wind Energy Association. 2014. Half-year Report, Bonn, Germany.Google Scholar
- Worton, B.J. 1995. Using Monte Carlo simulation to evaluate kernel-based home range estimators. The Journal of Wildlife Management 59: 794–800.CrossRefGoogle Scholar
- Worton, B.J. 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70: 164–168.CrossRefGoogle Scholar
- WWF Finland. 2015. Merikotka. http://wwf.fi/elainlajit/merikotka/.
- WWF Finland. 2011. WWF Suomen kanta: Ekologisesti kestävä tuulivoima.Google Scholar