Ambio

, Volume 45, Issue 7, pp 831–840 | Cite as

Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development

  • Fabio Balotari-Chiebao
  • Alexandre Villers
  • Asko Ijäs
  • Otso Ovaskainen
  • Sari Repka
  • Toni Laaksonen
Report

Abstract

The presence of poorly sited wind farms raises concerns for wildlife, including birds of prey. Therefore, there is a need to extend the knowledge of the potential human–wildlife conflicts associated with wind energy. Here, we report on the movements and habitat use of post-fledging satellite-tagged white-tailed eagles in Finland, where wind-energy development is expected to increase in the near future. In particular, we examine the probability of a fledgling approaching a hypothetical turbine that is placed at different distances from the nest. We found that this probability is high at short distances but considerably decreases with increasing distances to the nest. A utilisation–availability analysis showed that the coast was the preferred habitat. We argue that avoiding construction between active nests and the shoreline, as well as adopting the currently 2-km buffer zone for turbine deployment, can avoid or minimise potential impacts on post-fledging white-tailed eagles.

Keywords

Wind energy Post-fledging White-tailed eagle Movements Habitat use Conservation 

References

  1. Barrios, L., and A. Rodríguez. 2004. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. Journal of Applied Ecology 41: 72–81.CrossRefGoogle Scholar
  2. Bevanger, K., F. Berntsen, S. Clausen, E. L. Dahl, Ø. Flagstad, A. Follestad, D. Halley, F. Hanssen, et al. 2010. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (Bird-Wind). NINA Report 620, Trondheim, Norway.Google Scholar
  3. Bevanger, K., F. Berntsen, S. Clausen, E. L. Dahl, Ø. Flagstad, A. Follestad, D. Halley, F. Hanssen, et al. 2009. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (Bird-Wind). NINA Report 505, Trondheim, Norway.Google Scholar
  4. BirdLife International. 2013. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/.
  5. Bivand, R., and N. Lewin-Koh. 2013. maptools: Tools for reading and handling spatial objects. R Package Version 0.8-27.Google Scholar
  6. Bivand, R. S., and C. Rundel. 2013. rgeos: Interface to geometry engineOpen Source (GEOS). R Package Version 0.2-13.Google Scholar
  7. Calenge, C. 2006. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516–519.CrossRefGoogle Scholar
  8. Clobert, J., M. Baguette, T.G. Benton, and J.M. Bullock. 2012. Dispersal ecology and evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Corman, A.-M., and S. Garthe. 2014. What flight heights tell us about foraging and potential conflicts with wind farms: a case study in Lesser Black-backed Gulls (Larus fuscus). Journal of Ornithology 155: 1037–1043.CrossRefGoogle Scholar
  10. Cramp, S., and K.E.L. Simmons. 1980. Handbook of the Birds of Europe, the Middle East and North Africa: Hawks to Bustards. Oxford: Oxford University Press.Google Scholar
  11. Dahl, E.L., K. Bevanger, T. Nygård, E. Røskaft, and B.G. Stokke. 2012. Reduced breeding success in white-tailed eagles at Smøla windfarm, western Norway, is caused by mortality and displacement. Biological Conservation 145: 79–85.CrossRefGoogle Scholar
  12. de Lucas, M., M. Ferrer, M.J. Bechard, and A.R. Muñoz. 2012. Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures. Biological Conservation 147: 184–189.CrossRefGoogle Scholar
  13. Drewitt, A.L., and R.H.W. Langston. 2008. Collision effects of wind-power generators and other obstacles on birds. Annals of the New York Academy of Sciences 1134: 233–266.CrossRefGoogle Scholar
  14. Drewitt, A.L., and R.H.W. Langston. 2006. Assessing the impacts of wind farms on birds. Ibis 148: 29–42.CrossRefGoogle Scholar
  15. Duerr, A.E., T.A. Miller, M. Lanzone, D. Brandes, J. Cooper, K. O’Malley, C. Maisonneuve, J. Tremblay, and T. Katzner. 2012. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes. PLoS One 7: e35548.CrossRefGoogle Scholar
  16. Finnish Wind Association. 2015. Tuulivoimalaitokset ja tuulivoimahankkeet Suomessa. http://www.tuulivoimayhdistys.fi/hankelista.
  17. Gove, B., R.H.W. Langston, A. McCluskie, J.D. Pullan, I. Scrase. 2013. Wind farms and birds: an updated analysis of the effects of wind farms on birds, and best practice guidance on integrated planning and impact assessment (Report prepared by BirdLife International on behalf of the Bern Convention). Convention on the conservation of European wildlife and natural habitats: Bern Convention Bureau Meeting, Strasbourg, France.Google Scholar
  18. Hardey, J., H. Crick, C. Wernham, H. Riley, B. Etheridge, and D. Thompson. 2013. Raptors: A field guide to survey and monitoring. Norfolk: TSO (The Stationery Office).Google Scholar
  19. Herrmann, C., O. Krone, T. Stjernberg, B. Helander. 2011. Population Development of Baltic Bird Species: White-tailed Sea Eagle (Haliaeetus albicilla). HELCOM Baltic Sea Environment Fact Sheet 2011, Kotka, Finland.Google Scholar
  20. Hijmans, R.J., and Etten, J.V. 2013. Raster: Geographic data analysis and modeling, R package version 2.0-41.Google Scholar
  21. International Energy Agency. 2013. Technology Roadmap: Wind Energy, Paris, France.Google Scholar
  22. Katzner, T.E., D. Brandes, T. Miller, M. Lanzone, C. Maisonneuve, J.A. Tremblay, R. Mulvihill, and G.T. Merovich. 2012. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. Journal of Applied Ecology 49: 1178–1186.CrossRefGoogle Scholar
  23. Kenward, R.E. 2001. A manual for wildlife radio tagging. London: Academic Press.Google Scholar
  24. Krone, O., A. Berger, and R. Schulte. 2008. Recording movement and activity pattern of a White-tailed Sea Eagle (Haliaeetus albicilla) by a GPS datalogger. Journal of Ornithology 150: 273–280.CrossRefGoogle Scholar
  25. Krone, O., M. Nadjafzadeh, and A. Berger. 2013. White-tailed Sea Eagles (Haliaeetus albicilla) defend small home ranges in north-east Germany throughout the year. Journal of Ornithology 154: 827–835.CrossRefGoogle Scholar
  26. Krone, O., and C. Scharnweber. 2003. Two white-tailed sea eagles (Haliaeetus albicilla) collide with wind generators in northern Germany. Journal of Raptor Research 37(2): 174–176.Google Scholar
  27. Kuvlesky, W.P., L.A. Brennan, M.L. Morrison, K.K. Boydston, B.M. Ballard, and F.C. Bryant. 2007. Wind energy development and wildlife conservation: Challenges and opportunities. The Journal of Wildlife Management 71: 2487–2498.CrossRefGoogle Scholar
  28. May, R., T. Nygård, E.L. Dahl, and K. Bevanger. 2013. Habitat utilization in white-tailed eagles (Haliaeetus albicilla) and the displacement impact of the Smøla wind-power plant. Wildlife Society Bulletin 37: 75–83.CrossRefGoogle Scholar
  29. May, R., T. Nygård, E. L. Dahl, O. Reitan, and K. Bevanger. 2011. Collision risk in white-tailed eagles: Modelling kernel-based collision risk using satellite telemetry data in Smøla wind-power plant. NINA Report 692, Trondheim, Norway.Google Scholar
  30. Mikkola-Roos, M., J. Tiainen, A. Below, M. Hario, A. Lehikoinen, E. Lehikoinen, T. Lehtiniemi, A. Rajasärkkä, et al. 2010. Birds. In The 2010 red list of Finnish species, ed. P. Rassi, E. Hyvärinen, A. Juslén, and I. Mannerkoski, 320–331. Helsinki: Ympäristöministeriö & Suomen ympäristökeskus.Google Scholar
  31. National Energy and Climate Strategy. 2013. Government Report to Parliament on 20 March 2013.Google Scholar
  32. Neu, C.W., C.R. Byers, and J.M. Peek. 1974. A Technique for Analysis of Utilization-Availability Data. The Journal of Wildlife Management 38: 541–545.CrossRefGoogle Scholar
  33. Pearce-Higgins, J.W., L. Stephen, R.H.W. Langston, I.P. Bainbridge, and R. Bullman. 2009. The distribution of breeding birds around upland wind farms. Journal of Applied Ecology 46: 1323–1331.Google Scholar
  34. Reid, T., S. Krüger, D.P. Whitfield, and A. Amar. 2015. Using spatial analyses of bearded vulture movements in southern Africa to inform wind turbine placement. Journal of Applied Ecology 52: 881–892.CrossRefGoogle Scholar
  35. Schaub, M. 2012. Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biological Conservation 155: 111–118.CrossRefGoogle Scholar
  36. Shiraki, S. 2002. Post-fledging movements and foraging habitats of immature white-tailed sea eagles in the Nemuro Region, Hokkaido, Japan. Journal of Raptor Research 36: 220–224.Google Scholar
  37. Smallwood, K.S., and C. Thelander. 2008. Bird mortality in the Altamont Pass Wind Resource Area, California. The Journal of Wildlife Management 72: 215–223.CrossRefGoogle Scholar
  38. Ueta, M., Y. Fukuda, R. Takada. 2010. Difference in flight behavior between White-tailed and Steller’s Sea Eagle in Hokkaido. Bird Research 6: A43-A52 (in Japanese, English summary).Google Scholar
  39. Watson, J.W., A.A. Duff, and R.W. Davies. 2014. Home range and resource selection by GPS-monitored adult golden eagles in the Columbia Plateau Ecoregion: Implications for wind power development. The Journal of Wildlife Management 78: 1012–1021.CrossRefGoogle Scholar
  40. Whitfield, D.P., A. Douse, R.J. Evans, J. Grant, J. Love, D.R.A. McLeod, R. Reid, and J.D. Wilson. 2009a. Natal and breeding dispersal in a reintroduced population of white-tailed eagles Haliaeetus albicilla. Bird Study 56: 177–186.CrossRefGoogle Scholar
  41. Whitfield, D.P., K. Duffy, and D.R.A. McLeod. 2009b. Juvenile dispersal of white-tailed eagles in Western Scotland. Journal of Raptor Research 43: 110–120.CrossRefGoogle Scholar
  42. Wickham, H. 2009. ggplot2: Elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
  43. World Wind Energy Association. 2014. Half-year Report, Bonn, Germany.Google Scholar
  44. Worton, B.J. 1995. Using Monte Carlo simulation to evaluate kernel-based home range estimators. The Journal of Wildlife Management 59: 794–800.CrossRefGoogle Scholar
  45. Worton, B.J. 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70: 164–168.CrossRefGoogle Scholar
  46. WWF Finland. 2015. Merikotka. http://wwf.fi/elainlajit/merikotka/.
  47. WWF Finland. 2011. WWF Suomen kanta: Ekologisesti kestävä tuulivoima.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • Fabio Balotari-Chiebao
    • 2
  • Alexandre Villers
    • 1
    • 2
  • Asko Ijäs
    • 3
  • Otso Ovaskainen
    • 4
    • 5
  • Sari Repka
    • 3
  • Toni Laaksonen
    • 2
  1. 1.Centre d’Etudes Biologiques de Chizé, UMR 7372CNRS - Université de la RochelleVilliers en BoisFrance
  2. 2.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  3. 3.Brahea Centre, Centre for Maritime StudiesUniversity of TurkuPoriFinland
  4. 4.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Department of BiologyUniversity of Science and TechnologyTrondheimNorway

Personalised recommendations