, Volume 43, Issue 7, pp 914–925 | Cite as

Saving the Baltic Sea, the Inland Waters of Its Drainage Basin, or Both? Spatial Perspectives on Reducing P-Loads in Eastern Sweden

  • Ingela Andersson
  • Jerker Jarsjö
  • Mona Petersson


Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.


WFD HELCOM Catchment Marine Eutrophication Nutrient load 



This study was funded by the Ministry of Education and Research and conducted within the Research School for Teachers on Climate Evolution and Water Resources. It was part of the project Ecosystems as common-pool resources: Implication for building sustainable water management institutions in the Baltic Sea region, funded by the Foundation for Baltic and East European Studies. The second author acknowledges support from the strategic research project EkoKlim at Stockholm University.

Supplementary material

13280_2014_523_MOESM1_ESM.pdf (44 kb)
Supplementary material 1 (PDF 353 kb)


  1. Aarnio, T., V Jormalainen, J. Kuparinen, F. Wulff, S. Johansson, S. Laakkonen, and E. Kessler. eds. 2007. Science and governance of the Baltic Sea, AMBIO 36(2–3): 424–431.Google Scholar
  2. Andersen, J. H., S. Korpinen, M. Laamanen, and U. Wolpers, eds. 2010. Ecosystem Health of the Baltic Sea 2003–2007. HELCOM Initial Holistic Assessment. Helsinki Commission, Baltic Marine Environment Protection Commission, Baltic Sea Environment Proceedings No. 122, Helsinki, Finland.Google Scholar
  3. Andersson, I., M. Petersson, and J. Jarsjö. 2012. Impact of the European Water Framework Directive on local-level water management: Case study Oxunda Catchment, Sweden. Land Use Policy 29(1): 73–82.CrossRefGoogle Scholar
  4. Andersson, L., J. Rosberg, B.C. Pers, J. Olsson, and B. Arheimer. 2005. Estimating catchment nutrient flow with the HBV-NP Model: Sensitivity to input data. AMBIO 34(7): 521–532.Google Scholar
  5. Arheimer, B. 2006. Evaluation of water quantity and quality modelling in ungauged European basins. In Predictions in ungauged basins: Promises and progress, ed. M. Sivapalan, et al., 103–107. Wallingford: IAHS Publication 303.Google Scholar
  6. Backer, H., J.-M. Leppänen, A.C. Brusendorff, K. Forsius, M. Stankiewicz, J. Mehtonen, M. Pyhälä, M. Laamananen, et al. 2010. HELCOM Baltic Sea Action Plan—A regional programme of measures for the marine environment based on the ecosystem approach. Marine Pollution Bulletin 60: 642–649.CrossRefGoogle Scholar
  7. Balana, B.B., A. Vinten, and B. Slee. 2011. A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications. Ecological Economics 70(6): 1021–1031.CrossRefGoogle Scholar
  8. Bishop, K., K. Beven, G. Destouni, K. Abrahamsson, L. Andersson, R.K. Johnson, J. Rodhe, and N. Hjerdt. 2009. Nature as the “natural” goal for water management: A conversation. AMBIO 38(4): 209–214.CrossRefGoogle Scholar
  9. Brandt, M., H. Ejhed, and L. Rapp. 2008. The nutrient load to the Baltic Sea and Skagerrak and Kattegat 2006. Swedish EPA, Report 5815, Stockholm, Sweden, 96 pp (In Swedish, English Summary).Google Scholar
  10. Cherry, K.A., M. Shepherd, P.J.A. Withers, and S.J. Mooney. 2008. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of the Total Environment 406: 1–23.CrossRefGoogle Scholar
  11. Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323: 1014–1015.CrossRefGoogle Scholar
  12. Darracq, A., G. Lindgren, and G. Destouni. 2008. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins. Global Biogeochemical Cycles 22: GB3022.CrossRefGoogle Scholar
  13. Darracq, A., G. Destouni, K. Persson, C. Prieto, and J. Jarsjö. 2010. Quantification of advective solute travel times and mass transport through hydrological catchments. Environmental Fluid Mechanics 10(1–2): 103–120.CrossRefGoogle Scholar
  14. Destouni, G., K. Persson, C. Prieto, and J. Jarsjö. 2010. General quantification of catchment-scale nutrient and pollutant transport through the subsurface to surface and coastal waters. Environmental Science and Technology 44(6): 2048–2055.CrossRefGoogle Scholar
  15. Diaz, R.D., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  16. EC. 2000. European Parliament and the Council of the European Union. Directive 2000/60/EC establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.Google Scholar
  17. Ferreira, J.G., J.H. Andersen, A. Borja, S.B. Bricker, J. Camp, M. Cardoso da Silva, E. Garcés, A.-S. Heiskanen, C. Humborg, L. Ignatiades, C. Lancelot, A. Menesguen, P. Tett, N. Hoepffner, and U. Claussen. 2011. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive, Estuarine. Coastal and Shelf Science 93(2): 117–131.CrossRefGoogle Scholar
  18. Friedland, F., T. Neumann, and G. Schernewski. 2012. Climate change and the Baltic Sea Action Plan: Model simulations on the future of the western Baltic Sea. Journal of Marine Systems 105–108: 175–186.CrossRefGoogle Scholar
  19. Glavan, M., S.M. White, and I.P. Holman. 2012. Water quality targets and maintenance of valued landscape character—Experience in the Axe catchment, UK. Journal of Environmental Management 103: 142–153.CrossRefGoogle Scholar
  20. Gren, I.M., and G. Destouni. 2012. Does divergence of nutrient load measurements matter for successful mitigation of marine eutrophication? AMBIO 41(2): 151–160.CrossRefGoogle Scholar
  21. Hammer, M., B. Balfors, U. Mörtberg, M. Petersson, and A. Quin. 2011. Governance of water resources in the phase of change: A case study of the implementation of the EU Water Framework Directive in Sweden. AMBIO 40(2): 210–220.CrossRefGoogle Scholar
  22. Hannerz, F., and G. Destouni. 2006. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. AMBIO 35(5): 214–219.CrossRefGoogle Scholar
  23. Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C.K. Feld, A.-S. Heiskanen, R.K. Johnson, et al. 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment 408: 4007–4019.CrossRefGoogle Scholar
  24. Ioris, A.A.R. 2012. The political geography of environmental regulation: Implementing the Water Framework Directive in the Douro River Basin, Portugal. Scottish Geographical Journal 128(1): 1–23.CrossRefGoogle Scholar
  25. Jarsjö, J., Y. Shibuo, and G. Destouni. 2008. Spatial distribution of unmonitored inland water flows to the sea. Journal of Hydrology 348: 59–72.CrossRefGoogle Scholar
  26. Larsson, M., and M. Pettersson. 2009. Dominating areas and sources for eutrophication within the Northern Baltic Sea RBD. Sweden: Account of Governmental Commission and County Board of Västmanland. [In Swedish].Google Scholar
  27. Lundqvist, L. 2004. Integrating Swedish Water Resource Management: A multi level governance trilemma. Local Environment 9(5): 413–424.CrossRefGoogle Scholar
  28. Moss, B. 2008. The Water Framework Directive: Total environment or political compromise. Science of the Total Environment 400: 32–41.CrossRefGoogle Scholar
  29. Naturvårdsverket (The Swedish Environmental Protection Agency). 2008. Näringsbelastningen på Östersjön och Västerhavet 2006. Sveriges underlag till HELCOMs femte Pollution Load Compilation. Naturvårdsverkets Rapport 5815, 95 pp. ISBN 978-91-620-5815-9, (In Swedish).Google Scholar
  30. NBS-RBDA. 2008. Preliminär kartläggning och analys i Norra Östersjöns vattendistrikt. Northern Baltic Sea River Basin District Authority, Västerås, Sweden (In Swedish).Google Scholar
  31. NBS-RBDA. 2009. Förvaltningsplan Norra Östersjöns vattendistrikt 2009-2015. Northern Baltic Sea River Basin District Authority, Västerås, Sweden (In Swedish).Google Scholar
  32. Olli, G., A. Darracq, and G. Destouni. 2008. Field study of phosphorus transport and retention in drainage reaches. Journal of Hydrology 365: 46–55.CrossRefGoogle Scholar
  33. Persson, K., J. Jarsjö, and G. Destouni. 2011. Diffuse hydrological mass transport through catchments: scenario analysis of coupled physical and biogeochemical uncertainty effects. Hydrology and Earth System Sciences 15: 3195–3206.CrossRefGoogle Scholar
  34. Pitkänen, H., and T. Tamminen. 1995. Nitrogen and phosphorus as production limiting factors in the estuarine waters of the eastern Gulf of Finland. Marine Ecology Progress Series 129: 283–294.CrossRefGoogle Scholar
  35. Renberg, I., R. Bindler, E. Bradshaw, O. Emteryd, and S. McGowan. 2001. Sediment evidence of early eutrophication and heavy metal pollution of Lake Mälaren, Central Sweden. AMBIO 30(8): 496–502.Google Scholar
  36. SMHI. 2010. GSD river basin data, Swedish water archive. SVAR 2008. Accessed March 18, 2010.
  37. Ullrich, A., and M. Volk. 2010. Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment 171(1–4): 513–527.CrossRefGoogle Scholar
  38. UNEP/GRID-Arendal. 2001. Baltic Sea ArcView GIS data from Baltic Drainage Basin Project (BDBP). Retrieved July 7, 2010 from
  39. Volk, M., J. Hirschfeld, A. Dehnhardt, F. Schmidt, C. Bohn, S. Liersch, and P.W. Gassman. 2008. Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River. Ecological Economics 66: 66–76.CrossRefGoogle Scholar
  40. Volk, M., S. Liersch, and G. Schmidt. 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 26: 580–588.CrossRefGoogle Scholar
  41. Water Information System Sweden. 2009. Accessed December 1, 2013 (in Swedish).
  42. Wulff, F., O.P. Savchuk, A. Sokolov, C. Humborg, and C.-M. Mörth. 2007. Management options and effects on a marine ecosystem: Assessing the future of the Baltic. AMBIO 36(2–3): 243–249.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2014

Authors and Affiliations

  • Ingela Andersson
    • 1
    • 2
  • Jerker Jarsjö
    • 2
  • Mona Petersson
    • 1
  1. 1.School of Natural Sciences, Technology and Environmental StudiesSödertörn UniversityHuddingeSweden
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden

Personalised recommendations