AMBIO

, Volume 43, Issue 6, pp 779–790 | Cite as

Evaluating the Impact of Distance Measures on Deforestation Simulations in the Fluvial Landscapes of Amazonia

  • Maria Salonen
  • Eduardo Eiji Maeda
  • Tuuli Toivonen
Report

Abstract

Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models’ spatial accuracy, which often remains low.

Keywords

Accessibility Distance LUCC modeling Deforestation Peruvian Amazonia 

Notes

Acknowledgments

The work described in this paper was financially supported by the University of Helsinki 3-Year Research Grants and ERC project GEDA. We would like to thank the Amazon research team at the University of Turku for valuable comments on data sources during the preparation of the manuscript. We also thank the anonymous reviewers for their comments.

Supplementary material

13280_2013_463_MOESM1_ESM.pdf (206 kb)
Supplementary material (PDF 206 kb)

References

  1. Achard, F., R. Defries, H. Eva, M. Hansen, P. Mayaux, and H. Stibig. 2007. Pan-tropical monitoring of deforestation. Environmental Research Letters 2: 045022.CrossRefGoogle Scholar
  2. Almeida, C.M., J.M. Gleriani, E.F. Castejon, and B.S. Soares-Filho. 2008. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science 22: 943–963.CrossRefGoogle Scholar
  3. Alvarez, N.L., and L. Naughton-Treves. 2003. Linking national agrarian policy to deforestation in the Peruvian Amazon: A case study of Tambopata, 1986–1997. AMBIO 32: 269–274.Google Scholar
  4. Apparicio, P., M. Abdelmajid, M. Riva, and R. Shearmur. 2008. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues. International Journal of Health Geographics 7(1): 7.Google Scholar
  5. Batjes, N.H. 2009. Harmonized soil profile data for applications at global and continental scales: Updates to the WISE database. Soil Use and Management 25: 124–127.CrossRefGoogle Scholar
  6. Bonham-Carter, G. 1994. Geographic information systems for geoscientists: Modelling with GIS. Kidlington: Elsevier, Pergamon.Google Scholar
  7. Bowman, M.S., B.S. Soares-Filho, F.D. Merry, D.C. Nepstad, H. Rodrigues, and O.T. Almeida. 2012. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 29: 558–568.CrossRefGoogle Scholar
  8. Brown, D.G., S. Page, R. Riolo, M. Zellner, and W. Rand. 2005. Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographic Information Science 19: 153–174.CrossRefGoogle Scholar
  9. Chomitz, K.M., and D.A. Gray. 1996. Roads, land use, and deforestation: A spatial model applied to Belize. World Bank Economic Review 10: 487–512.CrossRefGoogle Scholar
  10. Chomitz, K.M., and T.S. Thomas. 2003. Determinants of land use in Amazônia: A fine-scale spatial analysis. American Journal of Agricultural Economics 85: 1016–1028.CrossRefGoogle Scholar
  11. Cochrane, M.A., and W.F. Laurance. 2008. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37: 522–527.CrossRefGoogle Scholar
  12. Cropper, M., J. Puri, and C. Griffiths. 2001. Predicting the location of deforestation: The role of roads and protected areas in North Thailand. Land Economics 77: 172–186.CrossRefGoogle Scholar
  13. Fuller, D.O., M. Hardiono, and E. Meijaard. 2011. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia. Environmental Management 48: 436–447.CrossRefGoogle Scholar
  14. Geurs, K.T., and B. van Wee. 2004. Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography 12: 127–140.CrossRefGoogle Scholar
  15. Guerrero, G., O. Masera, and J. Mas. 2008. Land use/land cover change dynamics in the Mexican highlands: Current situation and long term scenarios. In Modelling environmental dynamics: Advances in geomatic solutions, ed. M. Paegelow and M.T. Camacho Olmedo, 57 pp. Berlin: Springer.Google Scholar
  16. Hibbard, K., A. Janetos, D.P. Van Vuuren, J. Pongratz, S.K. Rose, R. Betts, M. Herold, and J.J. Feddema. 2010. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. International Journal of Climatology 30: 2118–2128.CrossRefGoogle Scholar
  17. Imbernon, J. 1999. A comparison of the driving forces behind deforestation in the Peruvian and the Brazilian Amazon. AMBIO 28: 509–513.Google Scholar
  18. Ingram, D.R. 1971. The concept of accessibility: A search for an operational form. Regional Studies 5: 101.CrossRefGoogle Scholar
  19. Jasinski, E., D. Morton, R. DeFries, Y. Shimabukuro, L. Anderson, and M. Hansen. 2005. Physical landscape correlates of the expansion of mechanized agriculture in Mato Grosso, Brazil. Earth Interactions 9(16): 1–18.Google Scholar
  20. Josse, C., G. Navarro, F. Encarnación, A. Tovar, P. Comer, W. Ferreira, F. Rodríguez, J. Saito, et al. 2007. Ecological systems of the Amazon Basin of Peru and Bolivia. Classification and Mapping. Arlington: NatureServe.Google Scholar
  21. Kim, O.S. 2010. An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD). Transactions in GIS 14: 631–654.CrossRefGoogle Scholar
  22. Kirby, K.R., W.F. Laurance, A.K. Albernaz, G. Schroth, P.M. Fearnside, S. Bergen, E.M. Venticinque, and C. da Costa. 2006. The future of deforestation in the Brazilian Amazon. Futures 38: 432–453.CrossRefGoogle Scholar
  23. Kok, K., A. Farrow, A. Veldkamp, and P.H. Verburg. 2001. A method and application of multi-scale validation in spatial land-use models. Agriculture, Ecosystems & Environment 85: 223–238.CrossRefGoogle Scholar
  24. Kvist, L.P., and G. Nebel. 2001. A review of Peruvian flood plain forests: Ecosystems, inhabitants and resource use. Forest Ecology and Management 150: 3–26.CrossRefGoogle Scholar
  25. Laurance, W.F., A.K.M. Albernaz, G. Schroth, P.M. Fearnside, S. Bergen, E.M. Venticinque, and C. Da Costa. 2002. Predictors of deforestation in the Brazilian Amazon. Journal of Biogeography 29: 737–748.CrossRefGoogle Scholar
  26. Maeda, E.E., B.J.F. Clark, P. Pellikka, and M. Siljander. 2010. Modelling agricultural expansion in Kenya’s Eastern Arc Mountains biodiversity hotspot. Agricultural Systems 103: 609–620.CrossRefGoogle Scholar
  27. Maeda, E.E., C.M. de Almeida, A. de Carvalho Ximenes, A.R. Formaggio, Y.E. Shimabukuro, and P. Pellikka. 2011. Dynamic modeling of forest conversion: Simulation of past and future scenarios of rural activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. International Journal of Applied Earth Observation and Geoinformation 13: 435–446.CrossRefGoogle Scholar
  28. Mann, M.L., R.K. Kaufmann, D. Bauer, S. Gopal, M.D.C. Vera-Diaz, D. Nepstad, F. Merry, J. Kallay, et al. 2010. The economics of cropland conversion in Amazonia: The importance of agricultural rent. Ecological Economics 69: 1503–1509.CrossRefGoogle Scholar
  29. Mas, J.F., H. Puig, J.L. Palacio, and A. Sosa-López. 2004. Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software 19: 461–471.CrossRefGoogle Scholar
  30. Mas, J.F., A. Pérez-Vega, and K.C. Clarke. 2012. Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecological Complexity 11: 38–45.CrossRefGoogle Scholar
  31. Merry, F., B. Soares-Filho, D. Nepstad, G. Amacher, and H. Rodrigues. 2009. Balancing conservation and economic sustainability: The future of the Amazon Timber Industry. Environmental Management 44: 395–407.CrossRefGoogle Scholar
  32. MINAM - Ministerio del Ambiente. 2009. Mapa de Deforestación de la Amazonía Peruana 2000. PROCLIM—Programa de Fortalecimiento de Capacidades Nacionales para manejar el impacto del Cambio Climático y la Contaminación del Aire. Memoria Descriptiva.Google Scholar
  33. Nelson, A. 2008. Travel time to major cities: A global map of Accessibility. Office for Official Publications of the European Communities, Luxembourg. doi: 10.2788/95835, ISBN:978-92-79-09771-3.
  34. Nelson, G.C., and D. Hellerstein. 1997. Do roads cause deforestation? Using satellite images in econometric analysis of land use. American Journal of Agricultural Economics 79: 80–88.CrossRefGoogle Scholar
  35. Oliveira, P.J.C., G.P. Asner, D.E. Knapp, A. Almeyda, R. Galván-Gildemeister, S. Keene, R.F. Raybin, and R.C. Smith. 2007. Land-use allocation protects the Peruvian Amazon. Science 317: 1233–1236.CrossRefGoogle Scholar
  36. Pan, W., D. Carr, A. Barbieri, R. Bilsborrow, and C. Suchindran. 2007. Forest clearing in the Ecuadorian amazon: A study of patterns over space and time. Population Research and Policy Review 26: 635–659.CrossRefGoogle Scholar
  37. Pontius, R.G., Jr., W. Boersma, J. Castella, K. Clarke, T. Nijs, C. Dietzel, Z. Duan, E. Fotsing, et al. 2008. Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science 42: 11–37.CrossRefGoogle Scholar
  38. Puhakka, M., R. Kalliola, M. Rajasilta, and J. Salo. 1992. River types, site evolution and successional vegetation patterns in Peruvian Amazonia. Journal of Biogeography 19: 651–665.CrossRefGoogle Scholar
  39. Salonen, M., T. Toivonen, J.-M. Cohalan, and O.T. Coomes. 2012. Critical distances: Comparing measures of spatial accessibility in the riverine landscapes of Peruvian Amazonia. Applied Geography 32: 501–513.CrossRefGoogle Scholar
  40. Schirpke, U., G. Leitinger, U. Tappeiner, and E. Tasser. 2012. SPA-LUCC: Developing land-use/cover scenarios in mountain landscapes. Ecological Informatics 12: 68–76.CrossRefGoogle Scholar
  41. Soares-Filho, B.S., G. CoutinhoCerqueira, and C. Lopes Pennachin. 2002. DINAMICA—A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling 154: 217–235.CrossRefGoogle Scholar
  42. Soares-Filho, B.S., D.C. Nepstad, L.M. Curran, G.C. Cerqueira, R.A. Garcia, C.A. Ramos, E. Voll, A. McDonald, et al. 2006. Modelling conservation in the Amazon basin. Nature 440: 520–523.CrossRefGoogle Scholar
  43. Soares-Filho, B.S., H.O. Rodrigues, and W.L.S. Costa. 2009. Modeling environmental dynamics with Dinamica EGO. Belo Horizonte, Brazil: Centro de Sensoriamento Remoto/Universida de Federal de Minas Gerais.Google Scholar
  44. Thapa, R.B., and Y. Murayama. 2011. Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems 35: 25–34.CrossRefGoogle Scholar
  45. Toivonen, T., S. Mäki, and R. Kalliola. 2007. The riverscape of Western Amazonia—A quantitative approach to the fluvial biogeography of the region. Journal of Biogeography 34: 1374–1387.CrossRefGoogle Scholar
  46. Tuomisto, H., K. Ruokolainen, R. Kalliola, A. Linna, W. Danjoy, and Z. Rodriguez. 1995. Dissecting Amazonian biodiversity. Science 269: 63–66.CrossRefGoogle Scholar
  47. Veldkamp, A., and E.F. Lambin. 2001. Predicting land-use change. Agriculture, Ecosystems & Environment 85: 1–6.CrossRefGoogle Scholar
  48. Verburg, P.H., K.P. Overmars, and N. Witte. 2004a. Accessibility and land-use patterns of the forest fringe in the northeastern part of the Philippines. Geographical Journal 170: 238–255.CrossRefGoogle Scholar
  49. Verburg, P.H., P.P. Schot, M.J. Dijst, and A. Veldkamp. 2004b. Land use change modelling: Current practice and research priorities. GeoJournal 61: 309–324.CrossRefGoogle Scholar
  50. Verburg, P.H., E.C. Ellis, and A. Letourneau. 2011a. A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters 6: 034019.CrossRefGoogle Scholar
  51. Verburg, P.H., K. Neumann, and L. Nol. 2011b. Challenges in using land use and land cover data for global change studies. Global Change Biology 17: 974–989.CrossRefGoogle Scholar
  52. Viña, A., F.R. Echavarria, and D.C. Rundquist. 2004. Satellite change detection analysis of deforestation rates and patterns along the Colombia–Ecuador border. AMBIO 33: 118–125.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2013

Authors and Affiliations

  • Maria Salonen
    • 2
  • Eduardo Eiji Maeda
    • 2
  • Tuuli Toivonen
    • 1
    • 2
  1. 1.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations