, Volume 42, Issue 7, pp 840–851 | Cite as

The Black Carbon Story: Early History and New Perspectives

  • Tica NovakovEmail author
  • Hal Rosen


A number of recent studies have suggested that black carbon (BC), the light-absorbing fraction of soot, is next to CO2 one of the strongest contributors to the global climate change. BC heats the air, darkens the snow and ice surfaces and could contribute to the melting of Arctic ice, snowpacks, and glaciers. Although soot is the oldest known pollutant its importance in climate modification has only been recently recognized. In this article, we trace the historical developments over about three decades that changed the view of the role of BC in the environment, from a pollutant of marginal importance to one of the main climate change agents. We also discuss some of the reasons for the initial lack of interest in BC and the subsequent rigorous research activity on the role of aerosols in climate change.


Atmospheric aerosols History Black carbon Climate 



The work at Lawrence Berkeley Laboratory summarized above has been supported by the National Science Foundation and by the US Department of Energy.


  1. Ackerman, T., and O.B. Toon. 1981. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Applied Optics 20: 3661–3668.CrossRefGoogle Scholar
  2. Adams, K.M., L.I. Davis Jr, S.M. Japar, and W.R. Pierson. 1989. Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy-II. Validation for atmospheric elemental carbon aerosol. Atmospheric Environment 23: 693–700.CrossRefGoogle Scholar
  3. Appel, B.R., P. Colodny, and J.J. Wesolowski. 1976. Analysis of carbonaceous materials in southern California atmospheric aerosols. Environmental Science and Technology 10: 350–363.CrossRefGoogle Scholar
  4. Barrie, L.A., R. Hoff, and S.M. Daggupaty. 1981. The influence of midlatitudinal pollution sources on haze in the Canadian Arctic. Atmospheric Environment 15: 1407–1419.CrossRefGoogle Scholar
  5. Bodhaine, B.A., J.M. Harris, and G.A. Herbert. 1981. Aerosol light scattering and condensation nuclei measurements at Barrow, Alaska. Atmospheric Environment 15: 1375–1390.CrossRefGoogle Scholar
  6. Bond, T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, et al. 2012. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres. doi: 10.1002/jgrd.50171.
  7. Brimblecombe, P. 1978. Air pollution in industrializing England. Journal of Air Pollution Control Association 28: 115–118.CrossRefGoogle Scholar
  8. Cachier, H., M.-P. Bremond, and A. Buat-Menard. 1989. Determination of atmospheric soot carbon with a simple thermal method. Tellus 41: 379–390.Google Scholar
  9. Cappa, C.D., T.B. Onasch, P. Massoli, D.R. Worsnop, T.S. Bates, E.B. Cross, P. Daidovits, J. Hakala, et al. 2012. Radiative absorption enhancements due to mixing state of atmospheric black carbon. Science 337: 1078–1081.CrossRefGoogle Scholar
  10. Cass, G.R., M.H. Conklin, J.J. Shah, J.J. Huntzicker, and E.S. Macias. 1984. Elemental carbon concentrations: Estimation of an historical data base. Atmospheric Environment 18: 153–162.CrossRefGoogle Scholar
  11. Castro, L.M., C.A. Pio, R.M. Harrison, and D.J.T. Smith. 1999. Carbonaceous a aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon. Atmospheric Environment 33: 2771–2781.CrossRefGoogle Scholar
  12. Cess, R.D. 1983. Arctic aerosol model estimates of interactive influences upon the surface-atmosphere clear sky radiation budget. Atmospheric Environment 17: 2555–2564.CrossRefGoogle Scholar
  13. Chang, S.G., and T. Novakov. 1975. Formation of pollution particulate nitrogen compounds by NO-soot and NH3-soot gas-particle surface reactions. Atmospheric Environment 9: 495–504.CrossRefGoogle Scholar
  14. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley Jr, J.E. Hansen, and D.J. Hofmann. 1992. Climate forcing by anthropogenic aerosols. Science 255: 423–429.CrossRefGoogle Scholar
  15. Chow, J.C., J.G. Watson, L.C. Pritchett, W.R. Pierson, C.A. Frazler, and R.G. Purcell. 1993. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in US air quality studies. Atmospheric Environment 27A: 1185–1201.Google Scholar
  16. Chung, C.E., V. Ramanathan, D. Kim, and I.A. Podgorny. 2005. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. Journal of Geophysical Research 110: D24207. doi: 10.1029/2005JD006356.CrossRefGoogle Scholar
  17. Clarke, A.D., and K.J. Noone. 1985. Soot in Arctic snowpack: A cause for perturbation in radiative transfer. Atmospheric Environment 19: 2045–2053.CrossRefGoogle Scholar
  18. Dalzell, W.H., and A.F. Sarofim. 1969. Optical constants of soot and their application to heat-flux calculations. Journal of Heat Transfer 91: 100–105.CrossRefGoogle Scholar
  19. Dod, R.L., and T. Novakov. 1982. Application of thermal analysis and photoelectron spectroscopy for the characterization of particulate matter. In Industrial applications of surface analysis, Vol. 199, Chap. 17, eds. L.A. Casper and C.J. Powell, 397–409. American Chemical Society Symposium Series, Washington, DC.Google Scholar
  20. Doherty, S.J., S.G. Warren, T.C. Grenfell, A.D. Clarke, and R.E. Brandt. 2010. Light absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics 10: 18807–18878.CrossRefGoogle Scholar
  21. Friedlander, S.K. 1973. Chemical element balances and identification of air pollution sources. Environmental Science and Technology 7: 235–240.CrossRefGoogle Scholar
  22. Gartrell Jr., G., S.L. Heisler, and S.K. Friedlander. 1980. Relating particulate properties to sources—The results for the California aerosol. Advances in Environmental Science and Technology 9: 665–713.Google Scholar
  23. Grenfell, T.C., D.K. Perovich, and J.A. Ogren. 1981. Spectral albedos of an alpine snowpack. Cold Regions Science and Technology 4: 121–127.CrossRefGoogle Scholar
  24. Gundel, L.A., R.L. Dod, H. Rosen, and T. Novakov. 1984. The relationship between optical attenuation and black carbon concentration for ambient and source particles. The Science of the Total Environment 36: 197–202.CrossRefGoogle Scholar
  25. Haagen-Smit, A.J. 1952. Chemistry and physiology of Los Angeles smog. Industrial and Engineering Chemistry 44: 1342–1346.CrossRefGoogle Scholar
  26. Hall, S.R. 1952. Evaluation of particulate concentrations with collecting apparatus. Analytical Chemistry 24: 996–1000.CrossRefGoogle Scholar
  27. Hansen, J., and L. Nazarenko. 2004. Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America 101: 423–428.CrossRefGoogle Scholar
  28. Hansen, A.D.A., H. Rosen, and T. Novakov. 1984. The Aethalometer: An instrument for real-time measurement of optical absorption by aerosol particles. The Science of the Total Environment 36: 191–196.CrossRefGoogle Scholar
  29. Hegg, D.A., J. Livinston, P.V. Hobbs, T. Novakov, and P. Russel. 1997. Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. Journal of Geophysical Research 102: 25293–25303.CrossRefGoogle Scholar
  30. Hidy, G.M. 1972. Aerosols and atmospheric chemistry, 348 pp. New York: Academic Press.Google Scholar
  31. Hidy, G.M., and P.K. Mueller. 1980. The character and origins of smog aerosols. In Advances in environmental science and technology, eds. J.N. Pitts and R.L. Metcalf, 776 pp. New York: Wiley.Google Scholar
  32. Hirdman, D., J.F. Burkhart, H. Sodemann, S. Eckhardt, A. Jeffereson, P.K. Quinn, S. Sharma, J. Strom, et al. 2010. Long-term trends of black carbon and sulphate aerosol in the Arctic, changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics 10: 9351–9368.CrossRefGoogle Scholar
  33. Hoffman, A., L. Osterloh, R. Stone, A. Lampert, C. Ritter, M. Stock, P. Tunved, T. Hennig, et al. 2012. Remote sensing and in situ measurements of tropospheric aerosol, a PAMARCMiP case study. Atmospheric Environment 52: 56–66.CrossRefGoogle Scholar
  34. Huntzicker, J.J., R.L. Johnson, J.J. Shah, and R.A. Cary. 1982. Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method. In Particulate carbon: Atmospheric life cycle, eds. G.T. Wolff and R.L. Klimisch, 411 pp. New York: Plenum Press.Google Scholar
  35. Jacobson, M.Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research 107: 4410. doi: 10.1029/2001JD001376.CrossRefGoogle Scholar
  36. Jayne, J.T., D. Leard, C. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Science and Technology 33: 49–70.CrossRefGoogle Scholar
  37. Jimenez, J.L., R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, and J.D. Allan. 2009. Evolution of organic aerosols in the atmosphere. Science 326: 1525–1529. doi: 10.1126/science.1180353.CrossRefGoogle Scholar
  38. Lelieveld, J., P.J. Crutzen, V. Ramanathan, M.O. Andreae, C.A.M. Brenninkmeijer, T. Campos, G.R. Cass, R.R. Dickerson, et al. 2001. The Indian Ocean experiment: Widespread air pollution from south and southeast Asia. Science 291: 1031–1036.CrossRefGoogle Scholar
  39. Lin, C.-I., M. Baker, and R.J. Charlson. 1973. Absorption coefficient of atmospheric aerosol: A method for measurement. Applied Optics 12: 1356–1383.CrossRefGoogle Scholar
  40. Malissa, H., H. Puxbaum, and E. Pell. 1976. Toward a relative conductometric carbon and sulfur determination in dusts. Fresenius Journal of Analytical Chemistry 282: 109–113 (in German, English summary).CrossRefGoogle Scholar
  41. McNaughton, C.S., A.D. Clarke, S. Freitag, V.N. Kapustin, Y. Kondo, N. Moteki, L. Sahu, N. Takegawa, et al. 2011. Absorbing aerosol in the troposphere of the western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics 11: 7561–7582.CrossRefGoogle Scholar
  42. Mueller, P.K., R.W. Mosley, and L.B. Pierce. 1972. Chemical composition of Pasadena aerosol by particle size and time of day: Carbonate and noncarbonate carbon content. Journal of Colloid and Interface Science 39: 235–239.CrossRefGoogle Scholar
  43. Neusüß, C., T. Gnauk, A. Plewka, H. Herrmann, and P. Quinn. 2002. Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. Journal of Geophysical Research 107: 8031.CrossRefGoogle Scholar
  44. Novakov, T. 1973. Chemical characterization of atmospheric pollution particulates by photoelectron spectroscopy. In Proceedings second joint conference on sensing of environmental pollutants, 197–204. Pittsburgh: Instrument Society of America.Google Scholar
  45. Novakov, T. 1981. Microchemical characterization of aerosols. In Proceedings of the 8th international microchemical symposium, eds. H. Malissa, M. Grasserbauer, and R. Belcher, 141–165. Graz, Austria 1980. Wien: Springer.Google Scholar
  46. Novakov, T. 1984. The role of soot in atmospheric chemistry. The Science of the Total Environment 36: 1–10.CrossRefGoogle Scholar
  47. Novakov, T., P.K. Mueller, A.E. Alcocer, and J.W. Otvos. 1972. Chemical states of nitrogen and sulfur by photoelectron spectroscopy. Journal of Colloid and Interface Science 39: 225–234.CrossRefGoogle Scholar
  48. Novakov, T., S.G. Chang, and A.B. Harker. 1974. Sulfates as pollution particulates: Catalytic formation on carbon (soot) particles. Science 186: 259–261.CrossRefGoogle Scholar
  49. Novakov, T., R.L. Dod, and S.G. Chang. 1976. Study of air pollution particulates by photoelectron spectroscopy. Zeitschrift fur Analytische Chemie 282: 287–290.CrossRefGoogle Scholar
  50. Ottar, B. 1981. The transfer of airborne pollutants to the Arctic region. Atmospheric Environment 15: 1439–1445.CrossRefGoogle Scholar
  51. Penner, J.E., and T. Novakov. 1996. Carbonaceous particles in the atmosphere: A historical perspective to the fifth international conference on carbonaceous particles in the atmosphere. Journal of Geophysical Research 101: 19373–19378.CrossRefGoogle Scholar
  52. Porch, W.M., and M.C. McCracken. 1982. Parametric study of the effects of Arctic soot on solar radiation. Atmospheric Environment 16: 1365–1371.CrossRefGoogle Scholar
  53. Rahn, K.A., and R.J. McCaffrey. 1980. On the origin and transport of the winter Arctic aerosol. Annals of the New York Academy of Sciences 338: 486–503.CrossRefGoogle Scholar
  54. Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geoscience 1: 221–226.CrossRefGoogle Scholar
  55. Rosen, H., and A.D.A. Hansen. 1985. Estimates of springtime soot and sulfur fluxes entering the Arctic troposphere: Implications to source regions. Atmospheric Environment 19: 2203–2207.CrossRefGoogle Scholar
  56. Rosen, H., and T. Novakov. 1977. Raman scattering and the characterization of atmospheric aerosol particles. Nature 266: 708–710.CrossRefGoogle Scholar
  57. Rosen, H., A.D.A. Hansen, L. Gundel, and T. Novakov. 1978. Identification of the optically absorbing component in urban aerosols. Applied Optics 17: 3859–3861.CrossRefGoogle Scholar
  58. Rosen, H., A.D.A. Hansen, R.L. Dod, and T. Novakov. 1976. Characterization of the carbonaceous component of ambient and source particulate samples by an optical absorption technique, 8–18. Lawrence Berkeley Laboratory Report LBL-68l9.Google Scholar
  59. Rosen, H., A.D.A. Hansen, R.L. Dod, and T. Novakov. 1980. Soot in urban atmospheres: Determination by an optical absorption technique. Science 208: 741–744.CrossRefGoogle Scholar
  60. Rosen, H., T. Novakov, and B. Bodhaine. 1981. Soot in the Arctic. Atmospheric Environment 15: 1371–1374.CrossRefGoogle Scholar
  61. Rosen, H., A.D.A. Hansen, and T. Novakov. 1984. Role of graphitic carbon particles in radiative transfer in the Arctic haze. The Science of the Total Environment 36: 103–110.CrossRefGoogle Scholar
  62. Salam, A., H. Baueri, K. Kassin, S.M. Ullah, and H. Puxbaum. 2003. Aerosol chemical characteristics of an island site in the Bay of Bengal. Journal of Environmental Monitoring 5: 483–490.CrossRefGoogle Scholar
  63. Sato, M., J. Hansen, D. Koch, A. Lacis, R. Ruedy, O. Dubovik, B. Holben, M. Chin, et al. 2003. Global atmospheric black carbon inferred from AERONET. Proceedings of the National Academy of Sciences of the United States of America 100: 6319–6324.CrossRefGoogle Scholar
  64. Schmid, H., L. Laskas, H.J. Abraham, U. Baltensperger, V. Lavanchy, M. Bizjak, P. Burba, H. Cachier, et al. 2001. Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmospheric Environment 35: 2111–2121.CrossRefGoogle Scholar
  65. Schnell, R.C. 1984. Arctic haze and the Arctic gas and aerosol sampling program (AGASP). Geophysical Research Letters 11: 361–364.CrossRefGoogle Scholar
  66. Schwartz, S.E. 1996. The whitehouse effect—shortwave radiative forcing of climate by anthropogenic aerosols: An overview. Journal of Aerosol Science 27: 359–382.CrossRefGoogle Scholar
  67. Schwartz, J.P., R.S. Gao, D.W. Fahey, D.S. Thomson, L.A. Watts, J.C. Wilson, J.M. Reeves, M. Darbeheshti, et al. 2006. Single-particle measurements of midlatitude black carbon and light scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research 111: D16207. doi: 10.1029/2006JD007076.CrossRefGoogle Scholar
  68. Shaw, G.E. 1975. The vertical distribution of atmospheric aerosols at Barrow, Alaska. Tellus 27: 39–50.CrossRefGoogle Scholar
  69. Thomas, M.D. 1952. The present status of the development of instrumentation from the study of air pollution. Proceedings National Air Pollution Symposium 2: 16–23.Google Scholar
  70. Valero, P.J., T.P. Ackerman, and W.J.Y. Gore. 1983. Radiative effects of the Arctic haze. Geophysical Research Letters 10: 1184–1187.CrossRefGoogle Scholar
  71. Warren, S.G., and W.J. Wiscombe. 1980. A model for the spectral albedo of snow II. Snow containing atmospheric aerosols. Journal of Atmospheric Science 37: 2734–2745.CrossRefGoogle Scholar
  72. Wilkins, E.T. 1954. Air pollution and the London fog of December, 1952. Journal Royal Sanitary Institute 74: 1–21.Google Scholar
  73. Yasa, Z., N.M. Amer, H. Rosen, A.D.A. Hansen, and T. Novakov. 1979. Photo-acoustic investigations of urban aerosol particles. Applied Optics 18: 2528–2530.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2013

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Hitachi Research in San JoseSan JoseUSA

Personalised recommendations