, Volume 42, Issue 1, pp 41–51 | Cite as

The Energy for Growing and Maintaining Cities

  • David N. BristowEmail author
  • Christopher A. Kennedy


Herein we develop a means to differentiate between the energy required to expand and the energy required to maintain the economies of cities. A nonlinear model is tested against historical data for two cities, Hong Kong and Singapore. A robust fit is obtained for Hong Kong, with energy for maintenance close to that for growth, while Singapore, with a weaker fit, is growth dominated. The findings suggest that decreases in either of the per unit maintenance or growth demands can simultaneously cause gross domestic product (GDP) and total energy use to increase. Furthermore, increasing maintenance demands can significantly limit growth in energy demand and GDP. Thus, the low maintenance demands for Hong Kong, and especially Singapore, imply that, all other things being equal, GDP and energy use of these cities will continue to grow, though Singapore’s higher energy use for growth means it will require more energy than Hong Kong.


Urban energy Urban economics Maintenance and growth Scaling Urban metabolism Sustainable cities 



This work has been graciously supported in part by the Natural Sciences and Engineering Research Council of Canada and the Ontario Ministry of Training, Colleges and Universities.


  1. Abou-Abdo, T., N.R. Davis, J.S. Krones, K.N. Welling, and J.E. Fernandez. 2011. Dynamic modeling of Singapore’s urban resource flows: Historical trends and sustainable scenario development. In IEEE International Symposium on Sustainable Systems and Technology (ISSST), 2011, 1–6. doi: 10.1109/ISSST.2011.5936851.
  2. Alper, Joseph S., and R.I. Gelb. 1990. Standard errors and confidence intervals in nonlinear regression: Comparison of Monte Carlo and parametric statistics. Journal of Physical Chemistry 94: 4747–4751. doi: 10.1021/j100374a068.CrossRefGoogle Scholar
  3. Anderson, William P., P.S. Kanaroglou, and E.J. Miller. 1996. Urban form, energy and the environment: A review of issues, evidence and policy. Urban Studies 33: 7–35. doi: 10.1080/00420989650012095.CrossRefGoogle Scholar
  4. Ayres, Robert U., and B. Warr. 2005. Accounting for growth: The role of physical work. Structural Change and Economic Dynamics 16: 181–209. doi: 10.1016/j.strueco.2003.10.003.CrossRefGoogle Scholar
  5. Berry, Brian Joe Lobley. 1991. Long-wave rhythms in economic development and political behavior. Baltimore: Johns Hopkins University Press.Google Scholar
  6. Bertoldi, P., and B. Atanasiu. 2007. Electricity consumption and efficiency trends in the enlarged European Union. European Commission, Directorate-General Research Centre, Institute for Environment and Sustainability. Retrieved July 12, 2012, from
  7. Bettencourt, L.M.A., J. Lobo, D. Helbing, C. Kuhnert, and G.B. West. 2007. Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America 104: 7301–7306. doi: 10.1073/pnas.0610172104.CrossRefGoogle Scholar
  8. Chaisson, Eric J. 2008. Long-term global heating from energy usage. EOS 89: 253–254. doi: 10.1029/2008EO280001.CrossRefGoogle Scholar
  9. Daly, Herman E. 2010. The steady-state economy. In Environmental ethics: The Big questions, ed. D.R. Keller. Malden: Wiley.Google Scholar
  10. EPA. 2008. Energy efficiency trends in residential & commercial buildings. Retrieved July 12, 2012, from
  11. Fath, B.D., S.E. Jørgensen, B.C. Patten, and M. Straškraba. 2004. Ecosystem growth and development. Biosystems 77: 213–228. doi: 10.1016/j.biosystems.2004.06.001.CrossRefGoogle Scholar
  12. Gleick, James. 1988. Chaos. New York: Penguin Books.Google Scholar
  13. Goudsblom, Johan. 1992. Fire and civilization. Toronto: Allen Lane, Penguin Books.Google Scholar
  14. Haberl, H., F. Krausmann, and S. Gingrich. 2006. Ecological embeddedness of the economy: A socioecological perspective on humanity’s economic activities 1700–2000. Economic and Political Weekly XLI: 4896–4904.Google Scholar
  15. Harvey, D. 2010. Energy and the new reality: Facing up to climatic change, Volume 1: Energy efficiency and the demand for energy services. London: Earthscan.Google Scholar
  16. Heavenrich, R.M. 2005. Light-duty automotive technology and fuel economy trends: 1975 through 2005. EPA. Retrieved July 12, 2012, from
  17. Hillman, T., and A. Ramaswami. 2010. Greenhouse gas emission footprints and energy use benchmarks for eight U.S. Cities. Environmental Science and Technology 44: 1902–1910. doi: 10.1021/es9024194.CrossRefGoogle Scholar
  18. Kennedy, C.A. 2011. The evolution of great world cities: Urban wealth and economic growth. Toronto: University of Toronto Press.Google Scholar
  19. Kennedy, C.A., J.K. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A. Phdungsilp, et al. 2009. Greenhouse gas emissions from global cities. Environmental Science and Technology 43: 7297–7302. doi: 10.1021/es900213p.Google Scholar
  20. Koomey, Jonathan G., S. Berard, M. Sanchez, and H. Wong. 2011. Implications of historical trends in the electrical efficiency of computing. IEEE Annals of the History of Computing 33: 46–54.CrossRefGoogle Scholar
  21. Kühnert, Christian, D. Helbing, and G.B. West. 2006. Scaling laws in urban supply networks. Physica A: Statistical Mechanics and its Applications 363: 96–103. doi: 10.1016/j.physa.2006.01.058.CrossRefGoogle Scholar
  22. Kurzweil, Ray. 2005. The singularity is near: When humans transcend biology. New York: Penguin.Google Scholar
  23. Lambert, Ronald J.W., I. Mytilinaios, L. Maitland, and A.M. Brown. 2012. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel. Computer Methods and Programs in Biomedicine 107: 155–163. doi: 10.1016/j.cmpb.2011.05.009.CrossRefGoogle Scholar
  24. Mage, David, G. Ozolins, P. Peterson, A. Webster, R. Orthofer, V. Vandeweerd, and M. Gwynne. 1996. Urban air pollution in megacities of the world. Atmospheric Environment 30: 681–686. doi: 10.1016/1352-2310(95)00219-7.CrossRefGoogle Scholar
  25. May, Robert M. 1974. Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science 186: 645–647.CrossRefGoogle Scholar
  26. Nakicenovic, N. 1988. Dynamics and replacement of US transport infrastructures. In Cities and their vital systems: Infrastructure past, present and future, ed. J.H. Ausubel, and R. Herman, 175–221. Washington, DC: National Academy Press.Google Scholar
  27. Newman, P.W.G., and J.R. Kenworthy. 1999. Sustainability and cities: Overcoming automobile dependence. Washington, DC: Island Press.Google Scholar
  28. Nicolis, G., and I. Prigogine. 1977. Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.Google Scholar
  29. Odum, Eugene P. 1969. The strategy of ecosystem development. Science 164: 262–270. doi: 10.1126/science.164.3877.262.CrossRefGoogle Scholar
  30. Parrish, David D., and T. Zhu. 2009. Clean air for megacities. Science 326: 674–675. doi: 10.1126/science.1176064.CrossRefGoogle Scholar
  31. Richards, F.J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–301. doi: 10.1093/jxb/10.2.290.CrossRefGoogle Scholar
  32. Rotmans, Jan, and D. Loorbach. 2009. Complexity and transition management. Journal of Industrial Ecology 13: 184–196. doi: 10.1111/j.1530-9290.2009.00116.x.CrossRefGoogle Scholar
  33. Schneider, E.D., and J.J. Kay. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19: 25–48.CrossRefGoogle Scholar
  34. Sieferle, Rolf Peter. 2001. The subterranean forest. Cambridge: The White Horse Press.Google Scholar
  35. Simon, Julian Lincoln. 1998. The ultimate resource 2. Princeton: Princeton University Press.Google Scholar
  36. Smil, Vaclav. 2008. Energy in nature and society: General energetics of complex systems. Cambridge: MIT Press.Google Scholar
  37. Spier, Fred. 2011. Big history and the future of humanity. Malden: Wiley.Google Scholar
  38. Steinberger, J.K., and Fridolin Krausmann. 2011. Material and energy productivity. Environmental Science and Technology 45: 1169–1176. doi: 10.1021/es1028537.CrossRefGoogle Scholar
  39. Steinberger, J.K., and J.T. Roberts. 2010. From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975–2005. Ecological Economics 7: 425–433. doi: 10.1016/j.ecolecon.2010.09.014.CrossRefGoogle Scholar
  40. Stockholm Memorandum. 2011. The Stockholm Memorandum. AMBIO 40: 781–785. doi: 10.1007/s13280-011-0187-8.
  41. Strogatz, Steven H. 2000. Nonlinear dynamics and chaos. Cambridge: Perseus Books Publishing, LLC.Google Scholar
  42. Suri, Vivek, and D. Chapman. 1998. Economic growth, trade and energy: Implications for the environmental Kuznets curve. Ecological Economics 25: 195–208. doi: 10.1016/S0921-8009(97)00180-8.CrossRefGoogle Scholar
  43. Victor, Peter A. 2008. Managing without growth: Slower by design, not disaster. Northampton: Edward Elgar Publishing.Google Scholar
  44. von Bertalanffy, Ludwig. 1957. Quantitative laws in metabolism and growth. The Quarterly Review of Biology 32: 217–231.CrossRefGoogle Scholar
  45. Warren-Rhodes, Kimberley, and A. Koenig. 2001. Escalating trends in the urban metabolism of Hong Kong: 1971–1997. AMBIO 30: 429–438. doi: 10.1579/0044-7447-30.7.429.Google Scholar
  46. Weisberg, Sanford. 2005. Applied linear regression. Hoboken: Wiley.CrossRefGoogle Scholar
  47. Westley, Frances, P. Olsson, C. Folke, T. Homer-Dixon, H. Vredenburg, D. Loorbach, J. Thompson, et al. 2011. Tipping toward sustainability: Emerging pathways of transformation. AMBIO 40: 762–780. doi: 10.1007/s13280-011-0186-9.CrossRefGoogle Scholar
  48. Young, A. 1992. A tale of two cities: Factor accumulation and technical change in Hong Kong and Singapore. In NBER Macroeconomics Annual 1992, vol. 7, ed. O.J. Blanchard, and S. Fi, 13–64. Cambridge: MIT Press.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations