AMBIO

, Volume 41, Supplement 3, pp 269–280 | Cite as

Tundra in the Rain: Differential Vegetation Responses to Three Years of Experimentally Doubled Summer Precipitation in Siberian Shrub and Swedish Bog Tundra

  • Frida Keuper
  • Frans-Jan W. Parmentier
  • Daan Blok
  • Peter M. van Bodegom
  • Ellen Dorrepaal
  • Jurgen R. van Hal
  • Richard S. P. van Logtestijn
  • Rien Aerts
Article

Abstract

Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year−1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.

Keywords

Water addition Plant traits Irrigation Primary production Subarctic High latitude 

Notes

Acknowledgments

We are grateful to the staff of the BioGeoChemical Cycles of Permafrost Ecosystems Lab in Yakutsk for logistic support and to the staff of the Kytalyk State Resource Reservation for their permission and hospitality to conduct research in the Kytalyk reserve. Special thanks to Sergei Karsanaev, Roman Sofronov, Elena Ivanova, Lena Paryadina, Stanislav Ksenofontov and Trofim Maximov. We also thank the staff of the Abisko Research station for technical assistance and Milo Keuper for practical support. The helpful comments of two anonymous reviewers greatly improved the manuscript. Financial support was offered to FK by the Darwin Centre for Biogeosciences (Grant 142.161.042) and ANS Scholarship 2008, and to RA by the Dutch Polar Program (ALW-NPP Grant 851.30.023) and the EU-ATANS (Grant FP6 506004).

References

  1. Aerts, R., J.H.C. Cornelissen, and E. Dorrepaal. 2006. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182: 65–77.Google Scholar
  2. Bell, J.N.B., and J.H. Tallis. 1973. Biological flora of British Isles—Empetrum Nigrum L. Journal of Ecology 61: 289–305.CrossRefGoogle Scholar
  3. Bengtsson, L., K.I. Hodges, S. Koumoutsaris, M. Zahn, and N. Keenlyside. 2011. The changing atmospheric water cycle in Polar Regions in a warmer climate. Tellus Series a-Dynamic Meteorology and Oceanography 63: 907–920. doi: 10.1111/j.1600-0870.2011.00534.x.CrossRefGoogle Scholar
  4. Bliss, L.C., J. Svoboda, and D.I. Bliss. 1984. Polar deserts, their plant cover and plant-production in the Canadian high Arctic. Holarctic Ecology 7: 305–324.Google Scholar
  5. Bliss, L.C., G.H.R. Henry, J. Svoboda, and D.I. Bliss. 1994. Patterns of plant-distribution within 2 polar desert landscapes. Arctic and Alpine Research 26: 46–55.CrossRefGoogle Scholar
  6. Blok, D., U. Sass-Klaassen, G. Schaepman-Strub, M.M.P.D. Heijmans, P. Sauren, and F. Berendse. 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8: 1169–1179. doi: 10.5194/bg-8-1169-2011.CrossRefGoogle Scholar
  7. Bret-Harte, M.S., G.R. Shaver, and F.S. Chapin. 2002. Primary and secondary stem growth in arctic shrubs: Implications for community response to environmental change. Journal of Ecology 90: 251–267.CrossRefGoogle Scholar
  8. Bret-Harte, M.S., G.R. Shaver, J.P. Zoerner, J.F. Johnstone, J.L. Wagner, A.S. Chavez, R.F. Gunkelman, S.C. Lippert, & J.A. Laundre. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82: 18–32.Google Scholar
  9. Callaghan, T.V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 37: 6. doi: 10.1029/2009gl042064.CrossRefGoogle Scholar
  10. Chapin III, S.F., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.CrossRefGoogle Scholar
  11. Clymo, R.S. 1970. Growth of Sphagnum—methods of measurement. Journal of Ecology 58: 13–17.Google Scholar
  12. Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D.E. Gurvich, P.B. Reich, H. ter Steege, et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4): 335–380. doi: 10.1071/bt02124.CrossRefGoogle Scholar
  13. Cornwell, W.K., and D.D. Ackerly. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109–126. doi: 10.1890/07-1134.1.CrossRefGoogle Scholar
  14. Dormann, C.F., and S.J. Woodin. 2002. Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Functional Ecology 16: 4–17.CrossRefGoogle Scholar
  15. Dorrepaal, E., R. Aerts, J.H.C. Cornelissen, T.V. Callaghan, and R.S.P. van Logtestijn. 2004. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology 10: 93–104.Google Scholar
  16. Dorrepaal, E., S. Toet, R.S.P. van Logtestijn, E. Swart, M.J. van de Weg, T.V. Callaghan, and R. Aerts. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460: U616–U679. doi: 10.1038/nature08216.CrossRefGoogle Scholar
  17. Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, A.D. Bjorkman, T.V. Callaghan, L.S. Collier, E.J. Cooper, et al. 2012. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15: 164–175. doi: 10.1111/j.1461-0248.2011.01716.x.CrossRefGoogle Scholar
  18. Gorham, E. 1991. Northern peatlands—role in the carbon-cycle and probable responses to climatic warming. Ecological Applications 1(2): 182–195.CrossRefGoogle Scholar
  19. Henry, G.H.R., B. Freedman, and J. Svoboda. 1986. Effects of fertilization on 3 tundra plant-communities of a polar desert oasis. Canadian Journal of Botany-Revue Canadienne De Botanique 64: 2502–2507.CrossRefGoogle Scholar
  20. Hodkinson, I.D., N.R. Webb, J.S. Bale, and W. Block. 1999. Hydrology, water availability and tundra ecosystem function in a changing climate: The need for a closer integration of ideas? Global Change Biology 5: 359–369.CrossRefGoogle Scholar
  21. IPCC. 2007. Climate Change 2007—The Physical Science Basis. In Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  22. Johansson, M., T.V. Callaghan, H.J. Akerman, and M. Jackowicz-Korczynsky, T.R. Christensen. 2009. Rapid response of active layer thickness and vegetation in sub-arctic Sweden to experimentally increased snow cover. Changing lowland permafrost in northern Sweden: multiple drivers of past and future trends, PhD thesis, Lund.Google Scholar
  23. Kade, A., D.A. Walker, and M.K. Raynolds. 2005. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia 35: 761–820.CrossRefGoogle Scholar
  24. Karlsson, P.S. 1985. Effects of water and mineral nutrient supply on a deciduous and an evergreen dwarf shrub-Vaccinium uliginosum L. and V. vistis-idaea L. Holarctic Ecology 8: 1–8.Google Scholar
  25. Karlsson, P.S., and T.V. Callaghan. 1996. Plant ecology in the subarctic Swedish Lapland. Ecological Bulletin 45: 220–227.Google Scholar
  26. Keuper, F., E. Dorrepaal, P.M. Van Bodegom, R. Aerts, R.S.P. Van Logtestijn, T.V. Callaghan, and J.H.C. Cornelissen. 2011. A Race for Space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Global Change Biology 17: 2162–2171.CrossRefGoogle Scholar
  27. Madsen, I.-L., and S. Widell. 1974. A vegetation map of the Stordalen site. In Progress Report 1973. IBP Swedish Tundra Biome Project Tech. Rep. 16:315, ed. J.G.K. Flower-Ellis. Lund University.Google Scholar
  28. Matthes-Sears, U., W.C. Matthes-Sears, S.J. Hastings, and W.C. Oechel. 1988. The effects of topography and nutrient status on the biomass, vegetative characteristics, and gas exchange of two deciduous shrubs on an Arctic tundra slope. Arctic and Alpine Research 20: 342–351.CrossRefGoogle Scholar
  29. McGraw, J.B. 1985. Experimental ecology of Dryas octopetala ecotypes. 3. Environmental factors and plant-growth. Arctic and Alpine Research 17: 229–239. doi: 10.2307/1551013.CrossRefGoogle Scholar
  30. Molau, Ulf. 2010. Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity 3: 29–34. doi: 10.1080/17550874.2010.487548.CrossRefGoogle Scholar
  31. Oberbauer, S., and P.C. Miller. 1982. Growth of Alaskan tundra plants in relation to water potential. Holarctic Ecology 5: 194–199.Google Scholar
  32. Olefeldt, D., and N.T. Roulet. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. Journal of Geophysical Research-Biogeosciences 117: 15. doi: 10.1029/2011jg001819.CrossRefGoogle Scholar
  33. Ordonez, J.C., P.M. van Bodegom, J.-P.M. Witte, I.J. Wright, P.B. Reich, and R. Aerts. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18: 137–149. doi: 10.1111/j.1466-8238.2008.00441.x.CrossRefGoogle Scholar
  34. Ostendorf, B., and J.F. Reynolds. 1998. A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology 13: 187–201.CrossRefGoogle Scholar
  35. Parmentier, F.J.W., M.K. van der Molen, J. van Huissteden, S.A. Karsanaev, A.V. Kononov, D.A. Suzdalov, T.C. Maximov, and A.J. Dolman. 2012. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. Journal of Geophysical Research-Biogeosciences 116. doi: 10.1029/2011jg001653.
  36. Parsons, A.N., J.M. Welker, P.A. Wookey, M.C. Press, T.V. Callaghan, and J.A. Lee. 1994. Growth-responses of four sub-arctic dwarf shrubs to simulated environmental-change. Journal of Ecology 82: 307–318.CrossRefGoogle Scholar
  37. Parsons, A.N., M.C. Press, P.A. Wookey, J.M. Welker, C.H. Robinson, T.V. Callaghan, and J.A. Lee. 1995. Growth-responses of Calamagrostis lapponica to simulated environmental-change in the sub-arctic. Oikos 72: 61–66.CrossRefGoogle Scholar
  38. Phoenix, G.K., D. Gwynn-Jones, T.V. Callaghan, D. Sleep, and J.A. Lee. 2001. Effects of global change on a sub-Arctic heath: Effects of enhanced UV-B radiation and increased summer precipitation. Journal of Ecology 89: 256–267. doi: 10.1046/j.1365-2745.2001.00531.x.CrossRefGoogle Scholar
  39. Piao, S., P. Friedlingstein, P. Ciais, L. Zhou, and A. Chen. 2006. Effect of climate and CO(2) changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters 33. doi: 10.1029/2006gl028205.
  40. Potter, J.A., M.C. Press, T.V. Callaghan, and J.A. Lee. 1995. Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change in the sub-arctic. New Phytologist 131: 533–541. doi: 10.1111/j.1469-8137.1995.tb03089.x.CrossRefGoogle Scholar
  41. Press, M.C., T.V. Callaghan, and J.A. Lee. 1998a. How will European arctic ecosystems respond to projected global environmental change? AMBIO 27: 306–311.Google Scholar
  42. Press, M.C., J.A. Potter, M.J.W. Burke, T.V. Callaghan, and J.A. Lee. 1998b. Responses of a subarctic dwarf shrub heath community to simulated environmental change. Journal of Ecology 86: 315–327.CrossRefGoogle Scholar
  43. Qian, H., R. Joseph, and N. Zeng. 2010. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Global Change Biology 16: 641–656. doi: 10.1111/j.1365-2486.2009.01989.x.CrossRefGoogle Scholar
  44. Remer. 2009. Temperature and Precipitation Graphs. NASA Earth Observatory. http://earthobservatory.nasa.gov/Experiments/Biome/biotundra.php. Accessed 18 Feb 2012.
  45. Robinson, C.H., P.A. Wookey, J.A. Lee, T.V. Callaghan, and M.C. Press. 1998. Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79: 856–866.CrossRefGoogle Scholar
  46. Rydén, B.E. 1976. Water availability to some arctic ecosystems. Nordic Hydrology 7: 73–80.Google Scholar
  47. Shaver, G.R., S.M. Bret-Harte, M.H. Jones, J. Johnstone, L. Gough, J. Laundre, and F.S. Chapin. 2001. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82: 3163–3181.CrossRefGoogle Scholar
  48. Shevtsova, A., E. Haukioja, and A. Ojala. 1997. Growth response of subarctic dwarf shrubs, Empetrum nigrum and Vaccinium vitis-idaea, to manipulated environmental conditions and species removal. Oikos 78: 440–458. doi: 10.2307/3545606.CrossRefGoogle Scholar
  49. Small, E. 1973. Xeromorphy in plants as a possible basis for migration between arid and nutritionally-deficient environments. Botaniska Notiser 126: 534–539.Google Scholar
  50. Sonesson, M. 1980. Ecology of a subarctic mire. Ecological Bulletins. Stockholm: Ecological Bulletins 30.Google Scholar
  51. Sonesson, M., B.A. Carlsson, T.V. Callaghan, S. Halling, L.O. Bjorn, M. Bertgren, and U. Johanson. 2002. Growth of two peat-forming mosses in subarctic mires: Species interactions and effects of simulated climate change. Oikos 99: 151–160.CrossRefGoogle Scholar
  52. Tank, A., J.B. Wijngaard, G.P. Konnen, R. Bohm, G. Demaree, A. Gocheva, M. Mileta, S. Pashiardis, et al. 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. International Journal of Climatology 22: 1441–1453. doi: 10.1002/joc.773.CrossRefGoogle Scholar
  53. Tarnocai, C., J.G. Canadell, E.A.G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23: 11. doi: 10.1029/2008gb003327.CrossRefGoogle Scholar
  54. van Huissteden, J., T.C. Maximov, and A.J. Dolman. 2005. High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). Journal of Geophysical Research-Biogeosciences 110. doi: 10.1029/2005JG000010.
  55. Van Wijk, M.T., K.E. Clemmensen, G.R. Shaver, M. Williams, T.V. Callaghan, F.S. Chapin, J.H.C. Cornelissen, L. Gough, et al. 2004. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: Generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology 10: 105–123.CrossRefGoogle Scholar
  56. Walker, D.A., M.K. Raynolds, F.J.A. Daniels, E. Einarsson, A. Elvebakk, W.A. Gould, A.E. Katenin, S.S. Kholod, et al. 2005. The circumpolar arctic vegetation map. Journal of Vegetation Science 16: 267–282.CrossRefGoogle Scholar
  57. Welker, J.M., P.A. Wookey, A.N. Parsons, M.C. Press, T.V. Callaghan, and J.A. Lee. 1993. Leaf carbon-isotope discrimination and vegetative responses of Dryas Octopetala to temperature and water manipulations in a high Arctic polar semidesert, Svalbard. Oecologia 95: 463–469.Google Scholar
  58. Whittaker, R.H., and P.L. Marks. 1975. Methods of assessing terrestrial productivity. In Primary productivity of the biosphere, ed. H. Lieth, and R.H. Whittaker, 55–118. New York: Springer.CrossRefGoogle Scholar
  59. Wookey, P.A., A.N. Parsons, J.M. Welker, J.A. Potter, T.V. Callaghan, J.A. Lee, and M.C. Press. 1993. Comparative responses of phenology and reproductive development to simulated environmental-change in sub-arctic and high arctic plants. Oikos 67: 490–502.CrossRefGoogle Scholar
  60. Wookey, P.A., C.H. Robinson, A.N. Parsons, J.M. Welker, M.C. Press, T.V. Callaghan, and J.A. Lee. 1995. Environmental constraints on the growth, photosynthesis and reproductive development of Dryas Octopetala at a high Arctic polar semidesert, Svalbard. Oecologia 102: 478–489.CrossRefGoogle Scholar
  61. Wright, I.J., P.B. Reich, J.H.C. Cornelissen, D.S. Falster, P.K. Groom, K. Hikosaka, W. Lee, C.H. Lusk, et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411–421. doi: 10.1111/j.1466-822x.2005.00172.x.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Frida Keuper
    • 1
    • 4
  • Frans-Jan W. Parmentier
    • 2
  • Daan Blok
    • 3
  • Peter M. van Bodegom
    • 1
  • Ellen Dorrepaal
    • 1
    • 4
  • Jurgen R. van Hal
    • 1
  • Richard S. P. van Logtestijn
    • 1
  • Rien Aerts
    • 1
  1. 1.Systems Ecology, Department of Ecological Science, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Lund UniversityLundSweden
  3. 3.University of CopenhagenCopenhagen KDenmark
  4. 4.Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityAbiskoSweden

Personalised recommendations