AMBIO

, Volume 41, Supplement 3, pp 207–217 | Cite as

Monitoring the Multi-Year Carbon Balance of a Subarctic Palsa Mire with Micrometeorological Techniques

  • Torben R. Christensen
  • Marcin Jackowicz-Korczyński
  • Mika Aurela
  • Patrick Crill
  • Michal Heliasz
  • Mikhail Mastepanov
  • Thomas Friborg
Article

Abstract

This article reports a dataset on 8 years of monitoring carbon fluxes in a subarctic palsa mire based on micrometeorological eddy covariance measurements. The mire is a complex with wet minerotrophic areas and elevated dry palsa as well as intermediate sub-ecosystems. The measurements document primarily the emission originating from the wet parts of the mire dominated by a rather homogenous cover of Eriophorum angustifolium. The CO2/CH4 flux measurements performed during the years 2001–2008 showed that the areas represented in the measurements were a relatively stable sink of carbon with an average annual rate of uptake amounting to on average −46 g C m−2 y−1 including an equally stable loss through CH4 emissions (18–22 g CH4–C m−2 y−1). This consistent carbon sink combined with substantial CH4 emissions is most likely what is to be expected as the permafrost under palsa mires degrades in response to climate warming.

Keywords

Carbon cycling Subarctic mire Permafrost Land–atmosphere exchange Climate change 

Notes

Acknowledgments

The presented study was supported by the EU funded GREENCYCLES-RTN. The Stordalen mire tower has also seen support of Swedish Research Councils VR and FORMAS, the Danish Natural Science Research Council as well as the Crafoord foundation and the Royal Swedish Physiographical Society. The authors are grateful to the staff at the Abisko Scientific Research Station, in particular the former Director Terry V. Callaghan, for invaluable support through the years in multiple aspects of the work at Stordalen.

References

  1. Åkerman, J., and M. Johansson. 2008. Thawing permafrost and thicker active layers in Sub-arctic Sweden. Permafrost and Periglacial Processes 19: 1–14.CrossRefGoogle Scholar
  2. Aubinet, M., A. Grelle, A. Ibrom, U. Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, et al. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Advances in Ecological Research 30: 113–175.CrossRefGoogle Scholar
  3. Aurela, M. 2005. Carbon dioxide exchange in subarctic ecosystems measured by micrometeorological technique. Finnish Meteorological Institute Contributions 51, PhD dissertation, Finnish Meteorological Institute, Helsinki.Google Scholar
  4. Aurela, M., T. Laurila, and J.P. Tuovinen. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters 31: L16119. doi: 10.1029/2004GL020315.CrossRefGoogle Scholar
  5. Bäckstrand, K., P.M. Crill, M. Mastepanov, T.R. Christensen, and D. Bastviken. 2008. Nonmethane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus Series B-Chemical and Physical Meteorology 60: 226–237. doi: 10.1007/s10021-008-9196-2.CrossRefGoogle Scholar
  6. Bäckstrand, K., P.M. Crill, M. Jackowicz-Korczyński, M. Mastepanov, T.R. Christensen, and D. Bastviken. 2010. Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7: 95–108.CrossRefGoogle Scholar
  7. Baldocchi, D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology 9: 479–492. doi: 10.1016/S0065-2504(07)00020-7.CrossRefGoogle Scholar
  8. Bosiö, J., M. Johansson, T.V. Callaghan, B. Johansson, and T.R. Christensen. 2012. Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment. Climatic Change. doi: 10.1007/s10584-012-0445-1.
  9. Burba, G., D. McDermitt, A. Grelle, D. Anderson, and L. Xu. 2008. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology 14: 1854–1876. doi: 10.1111/j.1365-2486.2008.01606.x.CrossRefGoogle Scholar
  10. Callaghan, T.V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 37: L14705. doi: 10.1029/2009GL042064.CrossRefGoogle Scholar
  11. Christensen, T.R., T. Johansson, H.J. Åkerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B.H. Svensson. 2004. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters 31: L04501. doi: 10.1029/2003GL018680.CrossRefGoogle Scholar
  12. Christensen, T.R., T. Johansson, M. Olsrud, L. Ström, A. Lindroth, M. Mastepanov, N. Malmer, T. Friborg, et al. 2007. A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences 365: 1643–1656. doi: 10.1098/rsta.2007.2035.CrossRefGoogle Scholar
  13. Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107: 43–69.CrossRefGoogle Scholar
  14. Foken, T., M. Göckede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger. 2004. Post-field data quality control. In Handbook of micrometeorology: A guide for surface flux measurements, ed. X. Lee, W. Massman, and B.E. Law, 181–208. Dordrecht: Kluwer.Google Scholar
  15. Friborg, T., T.R. Christensen, and H. Søgaard. 1997. Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. Geophysical Research Letters 24: 3061–3064.CrossRefGoogle Scholar
  16. Friborg, T., T.R. Christensen, B.U. Hansen, C. Nordstrøm, and H. Soegaard. 2000. Trace gas exchange in a high-arctic valley 2: Landscape CH4 fluxes measured and modelled using eddy correlation data. Global Biogeochemical Cycles 14: 715–723. doi: 10.1029/1999GB001136.CrossRefGoogle Scholar
  17. Grøndahl, L., T. Friborg, T. Christensen, A. Ekberg, B. Elberling, L. Illeris, C. Nordstrøm, Å. Rennermalm, et al. 2008. Spatial and interannual variability of trace gas fluxes in a heterogeneous high arctic landscape, high-arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland. Advances in Ecological Research 40: 473–498.CrossRefGoogle Scholar
  18. Heliasz, M., T. Johansson, A. Lindroth, M. Mölder, M. Mastepanov, T. Friborg, T.V. Callaghan, and T.R. Christensen. 2011. Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak. Geophysical Research Letters 38: L01704. doi: 10.1029/2010GL044733.CrossRefGoogle Scholar
  19. Holst, T., A. Arneth, S. Hayward, A. Ekberg, M. Mastepanov, M. Jackowicz-Korczyński, T. Friborg, P.M. Crill, et al. 2010. BVOC ecosystem flux measurements at a high latitude wetland site. Atmospheric Chemistry and Physics 10: 1617–1634.CrossRefGoogle Scholar
  20. Humphreys, E.R., and P.M. Lafleur. 2011. Does earlier snowmelt lead to greater CO2 sequestration in two low Arctic tundra ecosystems? Geophysical Research Letters 38: L09703. doi: 10.1029/2011GL047339.CrossRefGoogle Scholar
  21. Jackowicz-Korczyński, M., T.R. Christensen, K. Bäckstrand, P. Crill, T. Friborg, M. Mastepanov, and L. Ström. 2010. Annual cycle of methane emission from a subarctic peatland. Journal of Geophysical Research-Biogeosciences 115: G02009. doi: 10.1029/2008JG000913.CrossRefGoogle Scholar
  22. Johansson, T., N. Malmer, P.M. Crill, T. Friborg, J.H. Akerman, M. Mastepanov, and T.R. Christensen. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biology 12: 2352–2369. doi: 10.1111/j.1365-2486.2006.01267.x.CrossRefGoogle Scholar
  23. Karlsson, J., T.R. Christensen, P. Crill, J. Forster, D. Hammarlund, M. Jackowicz-Korczyński, U. Kokfelt, C. Roehm, and P. Rosen. 2010. Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment. Journal of Geophysical Research-Biogeosciences 115: G03006. doi: 10.1029/2010JG001305.CrossRefGoogle Scholar
  24. Lund, M., J.M. Falk, T. Friborg, H.N. Mbufong, C. Sigsgaard, H. Soegaard, and M.P. Tamstorf. 2012. Trends in CO2 exchange in a high Arctic tundra heath, 2000–2010. Journal of Geophysical Research-Biogeosciences 117: G02001. doi: 10.1029/2011JG001901.CrossRefGoogle Scholar
  25. Luoto, M., S. Fronzek, and F.S. Zuidhoff. 2004a. Spatial modelling of palsa mires in relation to climate in Northern Europe. Earth Surface Processes and Landforms 29: 1373–1387.CrossRefGoogle Scholar
  26. Luoto, M., R.K. Heikkinen, and T.R. Carter. 2004b. Loss of palsa mires in Europe and biological consequences. Environmental Conservation 31: 30–37.CrossRefGoogle Scholar
  27. Maanavilja, L., T. Riutta, M. Aurela, M. Pulkkinen, T. Laurila, and T.S. Tuittila. 2011. Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry 104: 325–345.CrossRefGoogle Scholar
  28. Malmer, N., T. Johansson, M. Olsrud, and T.R. Christensen. 2005. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Global Change Biology 11: 1895–1909. doi: 10.1111/j.1365-2486.2005.01042.x.Google Scholar
  29. Mauder, M., T. Foken, R. Clement, J.A. Elbers, W. Eugster, T. Grünwald, B. Heusinkveld, and O. Kolle. 2008. Quality control of CarboEurope flux data—Part 2: Inter-comparison of eddy-covariance software. Biogeosciences 5: 451–462.CrossRefGoogle Scholar
  30. Moncrieff, J.B., B. Monteny, A. Verhoef, T. Friborg, J. Elbers, P. Kabat, H. de Bruin, H. Soegaard, et al. 1997. Spatial and temporal variations in net carbon flux during HAPEX-Sahel. Journal of Hydrology 188–189: 563–588. doi: 10.1016/S0022-1694(96)03193-9.CrossRefGoogle Scholar
  31. Olefeldt, D., and N.T. Roulet. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. Journal of Geophysical Research-Biogeosciences 117: G01005. doi: 10.1029/2011JG001819.CrossRefGoogle Scholar
  32. Olefeldt, D., N.T. Roulet, O. Bergeron, P. Crill, K. Bäckstrand, and T.R. Christensen. 2012. Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophysical Research Letters 39: L03501. doi: 10.1029/2011GL050355.CrossRefGoogle Scholar
  33. Parmentier, F.J.W., M.K. van der Molen, J. van Huissteden, S.A. Karsanaev, A.V. Kononov, D.A. Suzdalov, T.C. Maximov, and A.J. Dolman. 2011. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. Journal of Geophysical Research 116: G04013. doi: 10.1029/2011JG001653.CrossRefGoogle Scholar
  34. Roulet, N.T., P.M. Lafleur, P.J.H. Richard, T.R. Moore, E.R. Humphreys, and J. Bubier. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411. doi: 10.1111/j.1365-2486.2006.01292.x.CrossRefGoogle Scholar
  35. Schuepp, P.H., M.Y. Leclerc, J.I. MacPherson, and R.L. Desjardins. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology 50: 355–373.CrossRefGoogle Scholar
  36. Sollid, J.L., and L. Sørbel. 1998. Palsa bogs as a climatic indicator—examples from Dovrefjell, Southern Norway. AMBIO 27: 287–291.Google Scholar
  37. Wik, M., P.M. Crill, D. Bastviken, A. Danielsson, and E. Norback. 2012. Bubbles trapped in arctic lake ice: Potential implications for methane emissions. Journal of Geophysical Research-Biogeosciences 116: G03044. doi: 10.1029/2011JG001761.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Torben R. Christensen
    • 1
  • Marcin Jackowicz-Korczyński
    • 1
  • Mika Aurela
    • 2
  • Patrick Crill
    • 3
  • Michal Heliasz
    • 1
  • Mikhail Mastepanov
    • 1
  • Thomas Friborg
    • 4
  1. 1.Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
  2. 2.Climate Change ResearchFinnish Meteorological InstituteHelsinkiFinland
  3. 3.Department of Geological SciencesStockholm UniversityStockholmSweden
  4. 4.Department of Geography and GeologyUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations