AMBIO

, Volume 41, Supplement 2, pp 169–173 | Cite as

Genetic Engineering of Cyanobacteria to Enhance Biohydrogen Production from Sunlight and Water

  • Hajime Masukawa
  • Masaharu Kitashima
  • Kazuhito Inoue
  • Hidehiro Sakurai
  • Robert P. Hausinger
Article

Abstract

To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.

Keywords

Cyanobacteria Hydrogen Hydrogenase Nitrogenase Photobiological H2 production 

Notes

Acknowledgments

This study was supported by the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and by the JST PRESTO.

References

  1. Berman-Frank, I., P. Lundgren, and P. Falkowski. 2003. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology 154: 157–164.CrossRefGoogle Scholar
  2. Bothe, H., O. Schmitz, M.G. Yates, and N.E. Newton. 2010. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews 74: 529–551.CrossRefGoogle Scholar
  3. Carrasco, C.D., S.D. Holliday, A. Hansel, P. Lindblad, and J.W. Golden. 2005. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. Journal of Bacteriology 187: 6031–6038.CrossRefGoogle Scholar
  4. Einsle, O., F.A. Tezcan, S.L. Andrade, B. Schmid, M. Yoshida, J.B. Howard, and D.C. Rees. 2002. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297: 1696–1700.CrossRefGoogle Scholar
  5. Elhai, J., and C.P. Wolk. 1988. Conjugal transfer of DNA to cyanobacteria. Methods in Enzymology 167: 747–754.CrossRefGoogle Scholar
  6. Ghirardi, M.L., and P. Mohanty. 2010. Oxygenic hydrogen photoproduction—current status of the technology. Current Science 98: 499–507.Google Scholar
  7. Ghirardi, M.L., M.C. Posewitz, P.C. Maness, A. Dubini, J. Yu, and M. Seibert. 2007. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annual Review of Plant Physiology 58: 71–91.CrossRefGoogle Scholar
  8. Ghirardi, M.L., A. Dubini, J. Yu, and P.C. Maness. 2009. Photobiological hydrogen-producing systems. Chemical Society Reviews 38: 52–61.CrossRefGoogle Scholar
  9. Happe, T., K. Schütz, and H. Böhme. 2000. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology 182: 1624–1631.CrossRefGoogle Scholar
  10. Kaneko, T., Y. Nakamura, C.P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, et al. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Research 8: 205–213.CrossRefGoogle Scholar
  11. Kosourov, S.N., M.L. Ghirardi, and M. Seibert. 2011. A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy 36: 2044–2048.CrossRefGoogle Scholar
  12. Kumazawa, S., and A. Mitsui. 1994. Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG-043511, under high cell-density conditions. Biotechnology and Bioengineering 44: 854–858.CrossRefGoogle Scholar
  13. Lindberg, P., K. Schütz, T. Happe, and P. Lindblad. 2002. A hydrogen producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. International Journal of Hydrogen Energy 27: 1291–1296.CrossRefGoogle Scholar
  14. Masukawa, H., M. Mochimaru, and H. Sakurai. 2002a. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology 58: 618–624.CrossRefGoogle Scholar
  15. Masukawa, H., M. Mochimaru, and H. Sakurai. 2002b. Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. International Journal of Hydrogen Energy 27: 1471–1474.CrossRefGoogle Scholar
  16. Masukawa, H., K. Inoue, and H. Sakurai. 2007. Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase. Applied and Environmental Microbiology 73: 7562–7570.CrossRefGoogle Scholar
  17. Masukawa, H., X. Zhang, E. Yamazaki, S. Iwata, K. Nakamura, M. Mochimaru, K. Inoue, and H. Sakurai. 2009. Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Marine Biotechnology 11: 397–409.CrossRefGoogle Scholar
  18. Masukawa, H., K. Inoue, H. Sakurai, C.P. Wolk, and R.P. Hausinger. 2010. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Applied and Environmental Microbiology 76: 6741–6750.CrossRefGoogle Scholar
  19. Mayer, S.M., C.A. Gormal, B.E. Smith, and D.M. Lawson. 2002. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). Journal of Biological Chemistry 277: 35263–35266.CrossRefGoogle Scholar
  20. Melis, A. 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Science 177: 272–280.CrossRefGoogle Scholar
  21. Sakurai, H., and H. Masukawa. 2007. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Marine Biotechnology 9: 128–145.CrossRefGoogle Scholar
  22. Seefeldt, L.C., B.M. Hoffman, and D.R. Dean. 2009. Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry 78: 701–722.CrossRefGoogle Scholar
  23. Schütz, K., T. Happe, O. Troshina, P. Lindblad, E. Leitao, P. Oliveira, and P. Tamagnini. 2004. Cyanobacterial H2 production—a comparative analysis. Planta 218: 350–359.CrossRefGoogle Scholar
  24. Tamagnini, P., R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews 66: 1–20.CrossRefGoogle Scholar
  25. Tamagnini, P., E. Leitao, P. Oliveira, D. Ferreira, F. Pinto, D.J. Harris, T. Heidorn, and P. Lindblad. 2007. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiology Reviews 31: 692–720.CrossRefGoogle Scholar
  26. Tsygankov, A.A., A.S. Fedorov, S.N. Kosourov, and K.K. Rao. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering 80: 777–783.CrossRefGoogle Scholar
  27. Wolk, C.P., A. Ernst, and J. Elhai. 1994. Heterocyst metabolism and development. In The molecular biology of cyanobacteria, ed. D.A. Bryant, 769–823. Dordrecht: Kluwer Academic Publishers.Google Scholar
  28. Yoshino, F., H. Ikeda, H. Masukawa, and H. Sakurai. 2007. High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnology 9: 101–112.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Hajime Masukawa
    • 1
    • 2
  • Masaharu Kitashima
    • 3
  • Kazuhito Inoue
    • 4
  • Hidehiro Sakurai
    • 1
  • Robert P. Hausinger
    • 5
  1. 1.Research Institute for Photobiological Hydrogen ProductionKanagawa UniversityHiratsukaJapan
  2. 2.PRESTO, Japan Science and Technology AgencyKawaguchiJapan
  3. 3.Research Institute for Integrated ScienceKanagawa UniversityHiratsukaJapan
  4. 4.Department of Biological SciencesKanagawa UniversityHiratsukaJapan
  5. 5.Department of Microbiology and Molecular Genetics2215 Biomedical Physical Sciences, Michigan State UniversityEast LansingUSA

Personalised recommendations