Advertisement

AMBIO

, Volume 41, Supplement 2, pp 112–118 | Cite as

Thin Film Solar Cells: Research in an Industrial Perspective

  • Marika Edoff
Article

Abstract

Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 as the sunlight-absorbing layer.

Keywords

Solar cells Photovoltaics Thin film Electricity CIGS CZTS 

Notes

Acknowledgments

All members of the thin film solar cell group are acknowledged for their hard work and many fruitful discussions. The research on Thin Film Solar Cells and systems at Uppsala University is funded by the Swedish Energy Agency, Vinnova, Göran Gustavsson Foundation and Solelprogrammet.

References

  1. Chirila, A., S. Buecheler, F. Pianezzi, P. Blösch, C. Gretener, A. Uhl, C. Fella, et al. 2011. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nature Materials 10: 857–861.CrossRefGoogle Scholar
  2. Decock, K., S. Khelifi, and M. Burgelman. 2011. Modelling multivalent defects in thin film solar cells. Thin Solid Films 519: 7481–7484.CrossRefGoogle Scholar
  3. Henry, C.H. 1980. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics 51: 4494–4500.CrossRefGoogle Scholar
  4. Hultqvist, A., C. Platzer-Björkman, T. Törndahl, M. Ruth, and M. Edoff. 2007. Optimization of i-ZnO window layers for Cu(In,Ga)Se2 solar cells. Proceedings of 22nd European Photovoltaic Solar Energy Conference, pp. 2381–2384.Google Scholar
  5. Hultqvist, A., C. Platzer-Björkman, U. Zimmermann, M. Edoff, and T. Törndahl. 2011. Growth kinetics, properties, performance and stability of ALD Zn-Sn-O buffer layers for Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications. doi: 10.1002/pip.1153.
  6. Jackson, P., D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, W. Wischmann, and M. Powalla. 2011. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics; Science and Applications 19: 894–897.CrossRefGoogle Scholar
  7. Naghavi, N., D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C.-H. Fischer, C. Guillen, et al. 2010. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Progress in Photovoltaics: Science and Applications 18: 411.Google Scholar
  8. Persson, C. 2010. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics 107: 053710-053710-8.Google Scholar
  9. Schleussner, S., U. Zimmermann, T. Wätjen, J. Pettersson, and M. Edoff. 2011. Effect of gallium grading in Cu(In, Ga)Se2 solar cell absorbers produced by multi-stage coevaporation. Solar Energy Materials and Solar Cells 95: 721–726.CrossRefGoogle Scholar
  10. Scragg, J., T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Björkman. 2011. Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chemistry of Materials 23: 4625–4633.CrossRefGoogle Scholar
  11. Siebentritt, S., M. Igalson, and C. Persson. 2010. The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Progress in Photovoltaics; Science and Applications 18: 390–410.CrossRefGoogle Scholar
  12. Todorov, T., K. Reuter, and D. Mitzi. 2010. High-efficiency solar cell with earth-abundant liquid-processed absorber. Advanced Materials 22: E156–E159.CrossRefGoogle Scholar
  13. Wei, S.H., S.B. Zhang, and A. Zunger. 1999. Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics 85: 7214–7218.CrossRefGoogle Scholar
  14. Zimmermann, U., and M. Edoff. 2011. A maximum power point tracker for long-term logging of PV Module performance. IEEE Journal on Photovoltaics 2: 47–55. doi: 10.1109/JPHOTOV.2011.2174031.CrossRefGoogle Scholar
  15. Zimmermann, U., M. Ruth, and M. Edoff. 2006. Cadmium-free CIGS mini-modules with ALD-grown Zn(O,S)-based buffer layers. Proceedings of 21st European Photovoltaic Solar Energy Conference, pp. 1831–1834.Google Scholar
  16. Zuser, A., and H. Rechberger. 2011. Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resources, Conservation and Recycling 56: 56–65.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.Division of Solid State Electronics, Department of Engineering Sciences, Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations