AMBIO

, Volume 41, Issue 4, pp 350–369 | Cite as

Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan

  • Lynn M. Russell
  • Philip J. Rasch
  • Georgina M. Mace
  • Robert B. Jackson
  • John Shepherd
  • Peter Liss
  • Margaret Leinen
  • David Schimel
  • Naomi E. Vaughan
  • Anthony C. Janetos
  • Philip W. Boyd
  • Richard J. Norby
  • Ken Caldeira
  • Joonas Merikanto
  • Paulo Artaxo
  • Jerry Melillo
  • M. Granger Morgan
Review Paper

Abstract

Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO2) removal (CDR), which removes CO2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.

Keywords

Geoengineering Ecosystems Climate change Carbon dioxide removal Solar radiation management 

References

  1. Arneth, A., S.P. Harrison, S. Zaehle, K. Tsigaridis, S. Menon, B.J. Bartlein, J. Feichter, A. Korhola, et al. 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3: 525–532. doi:10.1038/ngeo935.CrossRefGoogle Scholar
  2. Betts, R.A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187–190.CrossRefGoogle Scholar
  3. Blackstock, J.J., and J.C.S. Long. 2010. The politics of geoengineering. Science 327: 527.CrossRefGoogle Scholar
  4. Bopp, L., C. Le Quere, M. Heimann, A.C. Manning, and P. Monfray. 2002. Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16. doi:10.1029/2001gb001445.
  5. Boyd, P.W., and S.C. Doney. 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29: 53-1–53-4. 10.1029/2001gl014130.
  6. Boyd, P.W., C.S. Law, C.S. Wong, Y. Nojiri, A. Tsuda, M. Levasseur, S. Takeda, R. Rivkin, et al. 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428: 549–553. doi:10.1038/nature02437.CrossRefGoogle Scholar
  7. Boyd, P.W., T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, et al. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315: 612–617. doi:10.1126/science.1131669.CrossRefGoogle Scholar
  8. Boyd, P.W. 2008. Ranking geo-engineering schemes. Nature Geoscience 1: 722–724. doi:10.1038/ngeo348.CrossRefGoogle Scholar
  9. Boyd, P.W. 2009. Geopolitics of geoengineering. Nature Geoscience 2: 812. doi:10.1038/ngeo710.CrossRefGoogle Scholar
  10. Boyd, P.W., and M.J. Ellwood. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience 3: 675–682. doi:10.1038/ngeo964.CrossRefGoogle Scholar
  11. Boyd, P.W., D.S. Mackie, and K.A. Hunter. 2010. Aerosol iron deposition to the surface ocean—modes of iron supply and biological responses. Marine Chemistry 120: 128–143. doi:10.1016/j.marchem.2009.01.008.CrossRefGoogle Scholar
  12. Cao, L., and K. Caldeira. 2010. Can ocean iron fertilization mitigate ocean acidification? Climatic Change 99: 303–311. doi:10.1007/s10584-010-9799-4.CrossRefGoogle Scholar
  13. Carslaw, K.S., O. Boucher, D.V. Spracklen, G.W. Mann, J.G.L. Rae, S. Woodward, and M. Kulmala. 2010. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics 10: 701–1737.CrossRefGoogle Scholar
  14. Chan, F., J.A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W.T. Peterson, and B.A. Menge. 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319: 920. doi:10.1126/science.1149016.CrossRefGoogle Scholar
  15. Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533. doi:10.1038/nature03972.CrossRefGoogle Scholar
  16. Crutzen, P.J. 2006. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change 77: 211–219. doi:10.1007/s10584-006-9101-y.CrossRefGoogle Scholar
  17. Cunningham, S.A., T. Kanzow, D. Rayner, M.O. Baringer, W.E. Johns, J. Marotzke, H.R. Longworth, E.M. Grant, et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317: 935–938. doi:10.1126/science.1141304.CrossRefGoogle Scholar
  18. Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice, and G.M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332: 53–58.CrossRefGoogle Scholar
  19. de Baar, H.J.W., P.W. Boyd, K.H. Coale, M.R. Landry, A. Tsuda, P. Assmy, D.C.E. Bakker, Y. Bozec, et al. 2005. Synthesis of iron fertilization experiments: From the Iron Age in the age of enlightenment. Journal of Geophysical Research-Oceans 110: 1–24. doi:10.1029/2004jc002601.Google Scholar
  20. Doney, S.C. 1996. A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study site. Journal of Geophysical Research-Oceans 101: 25615–25634.CrossRefGoogle Scholar
  21. Doney, S.C. 2006. Oceanography—plankton in a warmer world. Nature 444: 695–696. doi:10.1038/444695a.CrossRefGoogle Scholar
  22. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other Co2 problem. Annual Review of Marine Science 1: 169–192. doi:10.1146/annurev.marine.010908.163834.CrossRefGoogle Scholar
  23. Doney, S.C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328: 1512–1516. doi:10.1126/science.1185198.CrossRefGoogle Scholar
  24. Dooley, J.J., and K.V. Calvin. 2011. Temporal and spatial deployment of carbon dioxide capture and storage technologies across the representative concentration pathways. Energy Procedia 4: 5845–5852.CrossRefGoogle Scholar
  25. Duce, R.A., J. LaRoche, K. Altieri, K.R. Arrigo, A.R. Baker, D.G. Capone, S. Cornell, F. Dentener, et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320: 893–897. doi:10.1126/science.1150369.CrossRefGoogle Scholar
  26. Durner, G.M., et al. 2009. Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79: 25–58.CrossRefGoogle Scholar
  27. Elliott, S., K.S. Lackner, H.J. Ziock, M.K. Dubey, H.P. Hanson, S. Barr, N.A. Ciszkowski, and D.R. Blake. 2001. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophysical Research Letters 28: 1235–1238.CrossRefGoogle Scholar
  28. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048.CrossRefGoogle Scholar
  29. Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240.CrossRefGoogle Scholar
  30. Field, C.B., D.B. Lobell, H.A. Peters, and N.R. Chiariello. 2007. Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources 32: 1–29. doi:10.1146/annurev.energy.32.053006.141119.CrossRefGoogle Scholar
  31. Gnanadesikan, A., J.L. Sarmiento, and R.D. Slater. 2003. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Global Biogeochemical Cycles 17: 1050. doi:10.1029/2002gb001940.CrossRefGoogle Scholar
  32. Gnanadesikan, A., and I. Marinov. 2008. Export is not enough: Nutrient cycling and carbon sequestration. Marine Ecology-Progress Series 364: 289–294. doi:10.3354/meps07550.CrossRefGoogle Scholar
  33. Gnanadesikan, A., K. Emanuel, G.A. Vecchi, W.G. Anderson, and R. Hallberg. 2010. How ocean color can steer pacific tropical cyclones. Geophysical Research Letters 37: L18802. doi:10.1029/2010gl044514.CrossRefGoogle Scholar
  34. Gu, L.H., D.D. Baldocchi, S.C. Wofsy, J.W. Munger, J.J. Michalsky, S.P. Urbanski, and T.A. Boden. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299: 2035–2038.CrossRefGoogle Scholar
  35. Hamme, R.C., P.W. Webley, W.R. Crawford, F.A. Whitney, M.D. DeGrandpre, S.R. Emerson, C.C. Eriksen, K.E. Giesbrecht, et al. 2010. Volcanic ash fuels anomalous plankton bloom in subarctic northeast pacific. Geophysical Research Letters 37: 1–5. doi:10.1029/2010gl044629.CrossRefGoogle Scholar
  36. Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328: 1523–1528. doi:10.1126/science.1189930.CrossRefGoogle Scholar
  37. IPCC (Intergovernmental Panel on Climate Change). 2005. Special report on carbon dioxide capture and storage. Prepared by Working Group III, ed. B. Metz, O.D., H.C. De Coninck, M. Loos, and L.A. Meyer. Cambridge: Cambridge University Press.Google Scholar
  38. IPCC (Intergovernmental Panel on Climate Change). 2007a. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report, ed. S. Solomon, D.Q., M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.Google Scholar
  39. IPCC (Intergovernmental Panel on Climate Change). 2007b. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report, ed. M.L. Parry, O.F.C., J.P. Palutikof, P.J. Van Der Linden, and C.E. Hanson. Cambridge University Press, Cambridge.Google Scholar
  40. Jackson, R.B., E.G. Jobbagy, R. Avissar, S.B. Roy, D.J. Barrett, C.W. Cook, K.A. Farley, D.C. le Maitre, et al. 2005. Trading water for carbon with biological sequestration. Science 310: 1944–1947. doi:10.1126/science.1119282.CrossRefGoogle Scholar
  41. Jackson, R.B., and J. Salzman. 2010. Pursuing geoengineering for atmospheric restoration. Issues in Science and Technology 26: 67–76.Google Scholar
  42. Jin, X., N. Gruber, H. Frenzel, S.C. Doney, and J.C. McWilliams. 2008. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5: 385–406.CrossRefGoogle Scholar
  43. Jones, A., J. Haywood, and O. Boucher. 2009. Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research-Atmospheres 114: 1–9. doi:10.1029/2008jd011450.Google Scholar
  44. Karl, D., and R. Letelier. 2008. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Marine Ecology-Progress Series 364: 257–268. doi:10.3354/meps07547.CrossRefGoogle Scholar
  45. Keith, D.W., M. Ha-Duong, and J.K. Stolaroff. 2006. Climate strategy with CO2 capture from the air. Climatic Change 74: 17–45. doi:10.1007/s10584-005-9026-x.CrossRefGoogle Scholar
  46. Keller, M., D.S. Schimel, W.W. Hargrove, and F.M. Hoffman. 2008. A continental strategy for the national ecological observatory network. Frontiers in Ecology and the Environment 6: 282–284.CrossRefGoogle Scholar
  47. Kravitz, B., A. Robock, L. Oman, G. Stenchikov, and A.B. Marquardt. 2009. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research-Atmospheres 114: D14109. doi:10.1029/2009jd011918.CrossRefGoogle Scholar
  48. Lackner, K.S. 2003. A guide to CO2 sequestration. Science 300: 1677–1678.CrossRefGoogle Scholar
  49. Latham, J. 1990. Control of global warming. Nature 347: 339–340.CrossRefGoogle Scholar
  50. Latham, J. 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmospheric Science Letters 3: 52–58. doi:10.1006/ASLE.2002.0048.CrossRefGoogle Scholar
  51. Latham, J., P. Rasch, C.C. Chen, L. Kettles, A. Gadian, A. Gettelman, H. Morrison, K. Bower, et al. 2008. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 3969–3987. doi:10.1098/rsta.2008.0137.CrossRefGoogle Scholar
  52. Law, C.S. 2008. Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Marine Ecology-Progress Series 364: 283–288. doi:10.3354/meps07549.CrossRefGoogle Scholar
  53. Lenton, T.M., and N.E. Vaughan. 2009. The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics 9: 5539–5561.CrossRefGoogle Scholar
  54. Lenton, T.M. 2010. The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Management 1: 145–160.CrossRefGoogle Scholar
  55. MacCracken, M.C. 2009. On the possible use of geoengineering to moderate specific climate change impacts. Environmental Research Letters 045107: 045114. doi:10.1088/1748-9326/4/4/045107.Google Scholar
  56. Manizza, M., M.J. Follows, S. Dutkiewicz, J.W. McClelland, D. Menemenlis, C.N. Hill, A. Townsend-Small, and B.J. Peterson. 2009. Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles 23. doi:10.1029/2008gb003396.
  57. Martin, J.H., R.M. Gordon, and S.E. Fitzwater. 1990. Iron in antarctic waters. Nature 345: 156–158.CrossRefGoogle Scholar
  58. Matear, R.J., and B. Elliott. 2004. Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. Journal of Geophysical Research-Oceans 109. doi:10.1029/2000jc000321.
  59. Matthews, H.D., and K. Caldeira. 2007. Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences of the United States of America 104: 9949–9954.CrossRefGoogle Scholar
  60. MEA (Millenium Ecosystem Assessment). 2005. Ecosystems and human well-being: Synthesis. Washington: Island Press.Google Scholar
  61. Melillo, J.M., P.A. Steudler, J.D. Aber, K. Newkirk, H. Lux, F.P. Bowles, C. Catricala, A. Magill, et al. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176.CrossRefGoogle Scholar
  62. Mercado, L.M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P.M. Cox. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458: 1014–1017. doi:10.1038/nature07949.CrossRefGoogle Scholar
  63. Mooney, H., A. Larigauderie, M. Cesario, T. Elmquist, O. Hoegh-Guldberg, S. Lavorel, G.M. Mace, M. Palmer, et al. 2009. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability 1: 46–54. doi:10.1016/j.cosust.2009.07.006.CrossRefGoogle Scholar
  64. Moore, J.C., S. Jevrejeva, and A. Grinsted. 2010. Efficacy of geoengineering to limit 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 107: 15699–15703. doi:10.1073/pnas.1008153107.CrossRefGoogle Scholar
  65. Norby, R.J., J.M. Warren, C.M. Iversen, B.E. Medlyn, and R.E. McMurtrie. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National academy of Sciences of the United States of America 107: 19368–19373. doi:10.1073/pnas.1006463107.CrossRefGoogle Scholar
  66. Parkhill, K.A., and N.F. Pidgeon. 2011. Public engagement on geoengineering research: Preliminary report on the SPICE deliberative workshops. Technical Report (Understanding Risk Group Working Paper, 11-01). Cardiff: School of Psychology, Cardiff University.Google Scholar
  67. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. doi:10.1038/nature01286.CrossRefGoogle Scholar
  68. Pereira, H.M., P.W. Leadley, V. Proenca, R. Alkemade, J.P.W. Scharlemann, J.F. Fernandez-Manjarres, M.B. Araujo, P. Balvanera, et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501. doi:10.1126/science.1196624.CrossRefGoogle Scholar
  69. Pielke, R.A., G. Marland, R.A. Betts, T.N. Chase, J.L. Eastman, J.O. Niles, D.D.S. Niyogi, and S.W. Running. 2002. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 360: 1705–1719. doi:10.1098/rsta.2002.1027.CrossRefGoogle Scholar
  70. Rasch, P.J., S. Tilmes, R.P. Turco, A. Robock, L. Oman, C.C. Chen, G.L. Stenchikov, and R.R. Garcia. 2008. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 4007–4037. doi:10.1098/rsta.2008.0131.CrossRefGoogle Scholar
  71. Rasch, P.J., J. Latham, and C.C. Chen. 2009. Geoengineering by cloud seeding: Influence on sea ice and climate system. Environmental Research Letters 4: 045112–045119. doi:10.1088/1748-9326/4/4/045112.CrossRefGoogle Scholar
  72. Rau, G.H., and K. Caldeira. 2002. Minimizing effects of CO2 storage in oceans. Science 295: 275–276.CrossRefGoogle Scholar
  73. Rau, G.H. 2011. CO2 mitigation via capture and chemical conversion in seawater. Environmental Science and Technology 45: 1088–1092. doi:10.1021/es102671x.CrossRefGoogle Scholar
  74. Raupach, M.R., P.J. Rayner, D.J. Barrett, R.S. DeFries, M. Heimann, D.S. Ojima, S. Quegan, and C.C. Schmullius. 2005. Model–data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biology 11: 378–397. doi:10.1111/j.1365-2486.2005.00917.x.CrossRefGoogle Scholar
  75. Raven, J.A., et al. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. London: Royal Society.Google Scholar
  76. Richardson, A.J., and D.S. Schoeman. 2004. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305: 1609–1612.CrossRefGoogle Scholar
  77. Ricke, K., G. Morgan, and M. Allen. 2010. Regional climate response to solar-radiation management. Nature Geoscience 3: 537–541. doi:10.10.38/NGEO915.CrossRefGoogle Scholar
  78. Robock, A., L. Oman, and G.L. Stenchikov. 2008. Regional climate responses to geoengineering with tropical and arctic SO2 injections. Journal of Geophysical Research-Atmospheres 113: D16101–D16115. doi:10.1029/2008jd010050.CrossRefGoogle Scholar
  79. Rotenberg, E., and D. Yakir. 2010. Contribution of semi-arid forests to the climate system. Science 327: 451–454. doi:10.1126/science.1179998.CrossRefGoogle Scholar
  80. Saba, V.S., M.A.M. Friedrichs, M.E. Carr, D. Antoine, R.A. Armstrong, I. Asanuma, O. Aumont, N.R. Bates, et al. 2010. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at bats and hot. Global Biogeochemical Cycles 24. doi:10.1029/2009gb003655.
  81. Sabine, C.L., M. Heimann, and P. Artaxo. 2004. Current status and past trends of the global carbon cycle, 17–44. Washington: Island Press.Google Scholar
  82. Salter, S., G. Sortino, and J. Latham. 2008. Sea-going hardware for the cloud albedo method of reversing global warming. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 3989–4006. doi:10.1098/rsta.2008.0136.CrossRefGoogle Scholar
  83. Sarmiento, J., R. Slater, J. Dunne, A. Gnanadesikan, and M. Hiscock. 2010. Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7: 3593–3624. doi:10.5194/bg-7-3593-2010.CrossRefGoogle Scholar
  84. Shepherd, J., K. Caldeira, P. Cox, J. Haigh, D. Keith, B. Launder, G. Mace, G. MacKerron, et al. 2009. Geoengineering the climate. London: The Royal Society.Google Scholar
  85. Silver, M.W., S. Bargu, S.L. Coale, C.R. Benitez-Nelson, A.C. Garcia, K.J. Roberts, E. Sekula-Wood, K.W. Bruland, et al. 2010. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proceedings of the National Academy of Sciences of the United States of America 107: 20762–20767. doi:10.1073/pnas.1006968107.CrossRefGoogle Scholar
  86. Socolow, R., M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, N. Lewis, M. Mazzotti, et al. 2011. Direct air capture of CO2 with chemicals, a technology assessment for the APS panel on public affairs. http://www.aps.org/policy/reports/assessments/loader.cfm?csModule=security/getfile&PageID=244407.
  87. Soden, B.J., R.T. Wetherald, G.L. Stenchikov, and A. Robock. 2002. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 296: 727–730.CrossRefGoogle Scholar
  88. Spracklen, D.V., B. Bonn, and K.S. Carslaw. 2008. Boreal forests, aerosols and the impacts on clouds and climate. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 366: 4613–4626. doi:10.1098/rsta.2008.0201.CrossRefGoogle Scholar
  89. Stenchikov, G.L., I. Kirchner, A. Robock, H.F. Graf, J.C. Antuna, R.G. Grainger, A. Lambert, and L. Thomason. 1998. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research-Atmospheres 103: 13837–13857.CrossRefGoogle Scholar
  90. Tilmes, S., R. Muller, and R. Salawitch. 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320: 1201–1204. doi:10.1126/science.1153966.CrossRefGoogle Scholar
  91. Trenberth, K.E., and A. Dai. 2007. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 34(5): L15702. doi:10.1029/2007gl030524.CrossRefGoogle Scholar
  92. Trick, C.G., B.D. Bill, W.P. Cochlan, M.L. Wells, V.L. Trainer, and L.D. Pickell. 2010. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences of the United States of America 107: 5887–5892. doi:10.1073/pnas.0910579107.CrossRefGoogle Scholar
  93. Wang, G.L., and D.S. Schimel. 2003. Climate change, climate modes, and climate impacts. Annual Review of Environment and Resources 28: 1–28.CrossRefGoogle Scholar
  94. Watson, A.J., P.W. Boyd, S.M. Turner, T.D. Jickells, and P.S. Liss. 2008. Designing the next generation of ocean iron fertilization experiments. Marine Ecology Progress Series 364: 303–309.CrossRefGoogle Scholar
  95. Wigley, T.M.L. 2006. A combined mitigation/geoengineering approach to climate stabilization. Science 314: 452–454. doi:10.1126/science.1131728.CrossRefGoogle Scholar
  96. Zeebe, R.E., and D. Archer. 2005. Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophysical Research Letters 32. doi:10.1029/2005gl022449.

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Lynn M. Russell
    • 1
  • Philip J. Rasch
    • 2
  • Georgina M. Mace
    • 3
  • Robert B. Jackson
    • 4
  • John Shepherd
    • 5
  • Peter Liss
    • 6
  • Margaret Leinen
    • 7
  • David Schimel
    • 8
  • Naomi E. Vaughan
    • 9
  • Anthony C. Janetos
    • 10
  • Philip W. Boyd
    • 11
  • Richard J. Norby
    • 12
  • Ken Caldeira
    • 13
  • Joonas Merikanto
    • 14
  • Paulo Artaxo
    • 15
  • Jerry Melillo
    • 16
  • M. Granger Morgan
    • 17
  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Centre for Population BiologyImperial College LondonAscotUK
  4. 4.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  5. 5.Earth System Science, School of Ocean and Earth Sciences, National Oceanography CentreUniversity of Southampton, European WaySouthamptonUK
  6. 6.School of Environmental SciencesUniversity of East AngliaNorwichUK
  7. 7.Harbor Branch Oceanographic InstituteFort PierceUSA
  8. 8.NEON IncBoulderUSA
  9. 9.Tyndall Centre for Climate Change Research, School of Environmental SciencesUniversity of East AngliaNorwichUK
  10. 10.Joint Global Change Research Institute Pacific Northwest National Laboratory/University of MarylandCollege ParkUSA
  11. 11.NIWA Centre of Chemical & Physical Oceanography, Department of ChemistryUniversity of OtagoDunedinNew Zealand
  12. 12.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  13. 13.Department of Global EcologyCarnegie InstitutionStanfordUSA
  14. 14.Division of Atmospheric Sciences, Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  15. 15.Institute of PhysicsUniversity of São PauloSão PauloBrazil
  16. 16.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  17. 17.Department of Engineering and Public PolicyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations