AMBIO

, Volume 41, Issue 1, pp 44–55 | Cite as

Tipping Elements in the Arctic Marine Ecosystem

  • Carlos M. Duarte
  • Susana Agustí
  • Paul Wassmann
  • Jesús M. Arrieta
  • Miquel Alcaraz
  • Alexandra Coello
  • Núria Marbà
  • Iris E. Hendriks
  • Johnna Holding
  • Iñigo García-Zarandona
  • Emma Kritzberg
  • Dolors Vaqué
Article

Abstract

The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

Keywords

Arctic Tipping points Ecosystem Non-linearity Ice Plankton 

Notes

Acknowledgments

This is a contribution to the Arctic Tipping Points project (www.eu-atp.org) funded by FP7 of the European Union (contract #226248).

References

  1. Agawin, N.S.R., C.M. Duarte, and S. Agustí. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45: 591–600.CrossRefGoogle Scholar
  2. Andersen, L.W., A.K. Frie, A. Rosing-Asvid, R. Hauksson, and K.M. Kovacs. 2011. A population on the edge: genetic diversity and population structure of the World’s northernmost harbour seals (Phoca vitulina). Biological Journal of the Linnean Society 102: 420–439.CrossRefGoogle Scholar
  3. Andersen, T., J. Carstensen, E. Hernández-García, and C.M. Duarte. 2009. Ecological thresholds and regime shifts: Approaches to identification. Trends in Ecology and the Environment 24: 49–57.CrossRefGoogle Scholar
  4. ACIA. 2004. Impacts of a warming Arctic: Arctic climate impact and assessment, ed. S.J. Hassol. Cambridge: Cambridge University Press.Google Scholar
  5. Arrieta, J.M., S. Arnaud-Haond, and C.M. Duarte. 2010. What lies underneath: Conserving the oceans’’ genetic resources. Proceedings of the National Academy of Sciences 107: 18318–18324.CrossRefGoogle Scholar
  6. Arrigo, K.R., G. van Dijken, and S. Pabi. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35: L19603. doi: 10.1029/2008GL035028.CrossRefGoogle Scholar
  7. Boé, J., A. Hall, and X. Qu. 2009. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience 2: 341–343.CrossRefGoogle Scholar
  8. Carstens, J., and A. Weydmann. 2012. Tipping points in the Arctic: Eyeballing or statistical significance. In The Arctic in the earth system perspective: The role of tipping points, ed. P. Wassmann, and T.M. Lenton. Ambio. doi: 10.1007/s13280-011-0223-8.
  9. Chang, G.C., and T.D. Dickey. 2004. Coastal ocean optical influences on solar transmission and radiant heating rate. Journal of Geophysical Research 109: C01020. doi: 10.1029/2003JC001821.CrossRefGoogle Scholar
  10. Chapin III, F.S., T.V. Callaghan, Y. Bergeron, M. Fukuda, J.F. Johnstone, G. Juday, and S.A. Zimov. 2004. Global change and the boreal forest: Thresholds, shifting states or gradual change? Ambio 33: 361–365.Google Scholar
  11. Comeau, S., G. Gorsky, R. Jeffree, J.-L. Teyssie, and J.-P. Gattuso. 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6: 1877–1882.CrossRefGoogle Scholar
  12. Cota, G.F., and R.E.H. Smith. 1991. Ecology of bottom ice algae: II Dynamics, distributions and productivity. Journal of Marine Systems 2: 279–295.CrossRefGoogle Scholar
  13. Davidson, E.A., and I.A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate. Nature 440: 165–173.CrossRefGoogle Scholar
  14. Dayton, P.K. 1985. Ecology of kelp communities. Annual Review of Ecology and Systematics 69: 219–250.Google Scholar
  15. Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, S. Dye, and J. Holfort. 2002. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416: 832–837.CrossRefGoogle Scholar
  16. Dorrepaal, E., S. Toet, R.S.P. an Logtestijn, E. Swart, M.J. van de Weg, T.V. Callaghan, and R. Aerts. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460: 616–619.CrossRefGoogle Scholar
  17. Driscoll, N.W., and G.H. Haug. 1998. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation? Science 282: 436–438.CrossRefGoogle Scholar
  18. Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sánchez-Camacho. 2009. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuaries and Coasts 32: 29–36.CrossRefGoogle Scholar
  19. Dunbar, M.J. 1953. Arctic and subarctic marine ecology: Immediate problems. Arctic 6: 75–90.Google Scholar
  20. Eisenman, I., and J.S. Wettlaufer. 2009. Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences 106: 28–32.CrossRefGoogle Scholar
  21. Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2002, updated 2009. Sea ice index. Boulder: National Snow and Ice Data Center. Digitalmedia. nsidc.org. Accessed August 5, 2011.
  22. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C.S. Holling. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics 35: 557–581.CrossRefGoogle Scholar
  23. Gradinger, R., B. Bluhm, and K. Iken. 2010. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt? Deep Sea Research Part II 57: 86–95.CrossRefGoogle Scholar
  24. Gregory, J.M., P. Huybrechts, and S.C.B. Raper. 2004. Threatened loss of the Greenland ice-sheet. Nature 428: 616.CrossRefGoogle Scholar
  25. Groffman, P.M., J.S. Baron, T. Blett, A.J. Gold, I. Goodman, L.H. Gunderson, B.M. Levinson, M.A. Palmer, et al. 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13.CrossRefGoogle Scholar
  26. Guo, L., C.-L. Ping, and R.W. Macdonald. 2007. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophysical Research Letters 34: L13603. doi: 10.1029/2007GL030689.CrossRefGoogle Scholar
  27. Harris, L.A., C.M. Duarte, and S.W. Nixon. 2006. Allometric laws and prediction in estuarine and coastal ecology. Estuaries and Coasts 29: 340–344.CrossRefGoogle Scholar
  28. Higdon, J.W., and S.H. Ferguson. 2009. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecological Applications 19: 1365–1375.CrossRefGoogle Scholar
  29. Holland, M.M., C.M. Bitz, and B. Tremblay. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters 33: L23503. doi: 10.1029/2006GL028024.CrossRefGoogle Scholar
  30. Huntington, H., M. Boyle, G. Flowers, J. Weatherly, L. Hinzman, R. Zulueta, C. Nicolson, and J. Overpeck. 2007. The influence of human activity in the Arctic on climate and climate impacts. Climatic Change 82: 77–92.CrossRefGoogle Scholar
  31. Jorgenson, M.T., Y.L. Shur, and E.R. Pullman. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters 33: L02503. doi: 10.1029/2005GL024960.CrossRefGoogle Scholar
  32. Kelly, B.P., A. Whiteley, and D. Tallmon. 2010. The Arctic melting pot. Nature 468: 891.CrossRefGoogle Scholar
  33. Kvenvolden, K.A. 1988. Methane hydrates and global climate. Global Biogeochemical Cycles 2: 221–229. doi: 10.1029/GB002i003p00221.CrossRefGoogle Scholar
  34. Lawrence, D.M., A.G. Slater, R.A. Tomas, M.M. Holland, and C. Deser. 2008. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters 35: L11506. doi: 10.1029/2008GL033985.CrossRefGoogle Scholar
  35. Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. 2008. Tipping elements in the earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America 105: 1786–1793.CrossRefGoogle Scholar
  36. Lenton, T.M. 2011. 2°C or not 2°C? That is the climate question. Nature 473: 7.CrossRefGoogle Scholar
  37. Lenton, T.M. 2012. Arctic climate tipping points. In The Arctic in the earth system perspective: The role of tipping points, ed. P. Wassmann, and T.M. Lenton. Ambio. doi: 10.1007/s13280-011-0221-x.
  38. Li, W.K.W., F.A. McLaughlin, C. Lovejoy, and E.C. Carmack. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326: 539.CrossRefGoogle Scholar
  39. Lopez-Urrutia, A., E. San Martin, R.P. Harris, and X. Irigoien. 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America 103: 8739–8744.CrossRefGoogle Scholar
  40. Mann, K.H. 1977. Destruction of kelp-beds by sea-urchins: A cyclical phenomenon or irreversible degradation? Helgoland Marine Research 30: 455–467.Google Scholar
  41. Maslin, M., M. Owen, R. Betts, S. Day, T.D. Jones, and A. Ridgwell. 2010. Gas hydrates: Past and future geohazard? Philosophical Transactions of the Royal Society A 368: 2369–2393.CrossRefGoogle Scholar
  42. May, R.M. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.CrossRefGoogle Scholar
  43. Morán, X.A.G.F., A. López-Urrutia, A. Calvo-Díax, and W.K.W. Li. 2009. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16: 1137–1144.CrossRefGoogle Scholar
  44. Muradian, R. 2001. Ecological thresholds: A survey. Ecological Economics 38: 7–24.CrossRefGoogle Scholar
  45. Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. Gajewski, et al. 1997. Arctic environmental change of the last four centuries. Science 278: 1251–1256.CrossRefGoogle Scholar
  46. Pechsiri, J.S., A. Sattari, P.G. Martinez, and L. Xuan. 2010. A review of the climate-change-impacts’ rates of change in the Arctic. Journal of Environmental Protection 1: 59–69.CrossRefGoogle Scholar
  47. Perovich, D.K., and J.A. Richter-Menge. 2009. Loss of sea ice in the Arctic. Annual Review of Marine Science 1: 417–441.CrossRefGoogle Scholar
  48. Perovich, D.K., B. Light, H. Eicken, K.F. Jones, K. Runciman, and S.V. Nghiem. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34: L19505. doi: 10.1029/2007GL031480.CrossRefGoogle Scholar
  49. Peterson, B.J., R.M. Holmes, J.W. McClelland, C.J. Vorosmarty, R.B. Lammers, A.I. Shiklomanov, I.A. Shiklomanov, and S. Rahmstorf. 2002. Increasing river discharge to the Arctic Ocean. Science 298: 2171–2173.CrossRefGoogle Scholar
  50. Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.CrossRefGoogle Scholar
  51. Prairie, Y., J. Breton, C. Vallières, and I. Laurion. 2009. Limnological properties of permafrost thaw ponds in northeastern Canada. Canadian Journal of Fisheries and Aquatic Science 66: 1635–1648.CrossRefGoogle Scholar
  52. Regaudie-de-Gioux, A., and C. M. Duarte. 2011. Temperature dependence of planktonic metabolism in the ocean. Global Biogeochemical Cycles (submitted).Google Scholar
  53. Renaud, P.E., M. L. Carroll, and W. G. Ambrose Jr. 2008. Effects of global warming on Arctic sea-floor communities and its consequences for higher trophic levels. In Impacts of global warming on polar ecosystems, ed. C.M. Duarte, 139–175. Madrid: Fundación BBVA.Google Scholar
  54. Rex, M., R.J. Salawitch, P. von der Gathen, N.R.P. Harris, M.P. Chipperfield, and B. Naujokat. 2004. Arctic ozone loss and climate change. Geophysical Research Letters 31: L04116. doi: 10.1029/2003GL018844.CrossRefGoogle Scholar
  55. Ruíz-Halpern, S., M.K. Sejr, C.M. Duarte, D. Krause-Jensen, T. Dalsgaard, J. Dachs, and Søren Rysgaard. 2010. Air-water exchange and vertical profiles of organic carbon in a subarctic fjord. Limnology and Oceanography 55: 1733–1740.CrossRefGoogle Scholar
  56. Russill, C., and Z. Nyssa. 2009. The tipping point trend in climate change communication. Global Environmental Change 19: 336–344.CrossRefGoogle Scholar
  57. Scheffer, M., S.H. Hosper, M.-L. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  58. Scheffer, M., S. Carpenter, J.A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefGoogle Scholar
  59. Scheffer, M., and S.R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution 18: 648–656.CrossRefGoogle Scholar
  60. Scheffer, M., J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, and G. Sugihara. 2009. Early-warning signals for critical transitions. Nature 461: 53–59.CrossRefGoogle Scholar
  61. Scholze, M., W. Knorr, N.W. Arnell, and I.C. Prentice. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences 35: 13116–13120.CrossRefGoogle Scholar
  62. Screen, J.A., and I. Simmonds. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464: 1334–1337.CrossRefGoogle Scholar
  63. Serreze, M., M.M. Holland, and J. Stroeve. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315: 1533–1536.CrossRefGoogle Scholar
  64. Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327: 1246–1250.CrossRefGoogle Scholar
  65. Siegenthaler, U., and J.L. Sarmiento. 1993. Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.CrossRefGoogle Scholar
  66. Smetacek, V., and S. Nicol. 2005. Polar ocean ecosystems in a changing world. Nature 437: 362–368.CrossRefGoogle Scholar
  67. Smith, J.B., S.H. Schneiber, M. Oppenheimer, G.W. Yohe, W. Hare, M.D. Mastrandea, A. Patwardhan, I. Burthon, et al. 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proceedings of the National Academy of Sciences 106: 4133–4137.CrossRefGoogle Scholar
  68. Soja, A.J., N.M. Tchebakova, N.H.F. French, M.D. Flannigan, H.H. Shugart, B.J. Stocks, A.I. Sukhinin, E.I. Parfenova, F.S. Chapin III, and P. W. Stackhouse Jr. 2007. Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change 56: 274–296.CrossRefGoogle Scholar
  69. Steinacher, M., F. Joos, T.L. Frölicher, G.-K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6: 515–533.CrossRefGoogle Scholar
  70. Stewart, E.J., D. Draper, and M.E. Johnston. 2005. A review of tourism research in the polar regions. Arctic 58: 383–394.Google Scholar
  71. Stroeve, J., M.M. Holland, W. Meier, T. Scambos, and M. Serreze. 2007. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters 34: L09501. doi: 10.1029/2007GL029703.CrossRefGoogle Scholar
  72. Taalas, P., E. Kyrö, T. Jokela, T. Koskela, K. Leszczynski, M. Rummukainen, J. Damski, and A. Supperi. 1996. Stratospheric ozone depletion and solar UV radiation in the Arctic and its potential impact on human health in Finland. Geophysica 32: 127–165.Google Scholar
  73. Tilmes, S., R. Müller, A. Engel, M. Rex, and J.M. Russell III. 2006. Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophysical Research Letters 33: L20812. doi: 10.1029/2006GL026925.CrossRefGoogle Scholar
  74. Travis, J.M.J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society London B 270: 467–473.CrossRefGoogle Scholar
  75. Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. K. Tank, D. Parker, F. Rahimzadeh et al. 2007. Observations: surface and atmospheric climate change. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.Google Scholar
  76. Tietsche, S., D. Notz, J.H. Jungclaus, and J. Marotzke. 2011. Recovery mechanisms of Arctic summer sea ice. Geophysical Research Letters 38: L02707. doi: 10.1029/2010GL045698.CrossRefGoogle Scholar
  77. Turetsky, M. R., R.K. Wieder, L.A. Halsey, and D.H. Vitt. 2002. Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters 29. doi:  10.1029/2001GL014000.
  78. United States Arctic Research Commission. 2001. The Arctic Ocean and climate change: A scenario for the US navy. Arlington: US office for Navel Research.Google Scholar
  79. van Huissteden, J., C. Berrittella, F.J.W. Parmentier, Y. Mi, T.C. Maximov, and A.J. Dolman. 2011. Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Climate Change 1: 119–123.CrossRefGoogle Scholar
  80. Vaquer-Sunyer, R., C.M. Duarte, P. Wassmann, R. Santiago, and M. Reigstad. 2010. Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector. Polar Biology. doi: 10.1007/s00300-010-0788-x .
  81. Velicogna, I., and J. Whar. 2006. Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–331.CrossRefGoogle Scholar
  82. Wadhams, P. 2012. Ice cover, ice thickness and tipping points. In The Arctic in the earth system perspective: the role of tipping points, ed. P. Wassmann, T.M. Lenton. Ambio. doi: 10.1007/s13280-011-0222-9.
  83. Wang, M., and J.E. Overland. 2009. A sea ice free summer Arctic within 30 years? Geophysical Research Letters 36: L07502. doi: 10.1029/2009GL037820.CrossRefGoogle Scholar
  84. Wassmann, P., C.M. Duarte, S. Agustí, and M.K. Sejr. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17: 1235–1249.CrossRefGoogle Scholar
  85. Wassmann, P., J. Carroll, and R.G.J. Bellerby. 2008. Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change: An introduction. Deep-Sea Research Part II 55: 2143–2153.CrossRefGoogle Scholar
  86. Wassmann, P. 2008. Impacts of global warming on Arctic pelagic ecosystems and processes. In Impacts of global warming on polar ecosystems, ed. C.M. Duarte, 111–138, Madrid: Fundación BBVA.Google Scholar
  87. Wassmann, P. 2011. Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography 90: 1–17.CrossRefGoogle Scholar
  88. Werner, I. 1997. Grazing of Arctic under-ice amphipods on sea-ice algae. Marine Ecology Progress Series 60: 93–99.CrossRefGoogle Scholar
  89. Węsławski, J.M., L. Stempniewicz, F. Mehlum, and S. Kwaśniewski. 1999. Summer feeding strategy of the little auk (Alle alle) from Bjørnøya, Barents Sea. Polar Biology 21: 129–134.CrossRefGoogle Scholar
  90. Wiencke, C., I. Gómez, H. Pakker, A. Flores-Moya, M. Altamirano, D. Hanelt, K. Bischof, and F.L. Figueroa. 2000. Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: Implications for depth zonation. Marine Ecology Progress Series 197: 217–229.CrossRefGoogle Scholar
  91. Wiencke, C., M.Y. Roleda, A. Gruber, M.N. Clayton, and K. Bischof. 2006. Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: Evidence through field experiments. Journal of Ecology 94: 1365–2745.CrossRefGoogle Scholar
  92. Yurganov, L., V. Rakitin, A. Dzhola, T. August, E. Fokeeva, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow. 2011. Satellite- and ground-based CO2 total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry Physics Discussions 11: 12207–12250.CrossRefGoogle Scholar
  93. Zwally, H.J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen. 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297: 218–222.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Carlos M. Duarte
    • 1
    • 2
  • Susana Agustí
    • 1
    • 3
  • Paul Wassmann
    • 4
  • Jesús M. Arrieta
    • 1
  • Miquel Alcaraz
    • 5
  • Alexandra Coello
    • 1
  • Núria Marbà
    • 1
  • Iris E. Hendriks
    • 1
  • Johnna Holding
    • 1
  • Iñigo García-Zarandona
    • 1
  • Emma Kritzberg
    • 6
  • Dolors Vaqué
    • 5
  1. 1.IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados Miquel Marqués 21MallorcaSpain
  2. 2.The UWA Oceans InstituteThe University of Western AustraliaCrawleyAustralia
  3. 3.The UWA Oceans Institute and School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  4. 4.Department of Arctic and Marine Biology, Faculty of BioscienceFishery and Economy, University of TromsøTromsøNorway
  5. 5.Institut de Ciéncies del Mar, CSIC, Passeig Maritim de la Barceloneta 37-49BarcelonaSpain
  6. 6.Department of BiologyLund University Ecology Building, Sölvegatan 37LundSweden

Personalised recommendations