AMBIO

, Volume 41, Issue 1, pp 10–22 | Cite as

Arctic Climate Tipping Points

Article

Abstract

There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

Keywords

Arctic Tipping points Sea-ice Greenland ice sheet Atlantic thermohaline circulation Boreal forest 

References

  1. Abbot, D.S., M. Silber, and R.T. Pierrehumbert. 2011. Bifurcations leading to summer Arctic sea ice loss. Journal of Geophysical Research 116: D19120.CrossRefGoogle Scholar
  2. Alley, R.B., S. Anandakrishnan, and P. Jung. 2001. Stochastic resonance in the North Atlantic. Paleoceanography 16: 190–198.CrossRefGoogle Scholar
  3. Alley, R.B., J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke, R.T. Pierrehumbert, P.B. Rhines, et al. 2003. Abrupt climate change. Science 299: 2005–2010.CrossRefGoogle Scholar
  4. Allison, I., N.L. Bindoff, R.A. Bindschadler, P.M. Cox, N. de Noblet, M.H. England, J.E. Francis, N. Gruber, et al. 2009. In The Copenhagen Diagnosis, 2009: Updating the world on the Latest Climate Science, 60 pp. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia.Google Scholar
  5. Archer, D. 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4: 993–1057.CrossRefGoogle Scholar
  6. Archer, D., B. Buffett, and V. Brovkin. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 106: 20596–20601.CrossRefGoogle Scholar
  7. Austin, J., D. Shindell, S.R. Beagley, C. Bruhl, M. Dameris, E. Manzini, T. Nagashima, P. Newman, et al. 2003. Assessments of chemistry-climate models of the stratosphere. Atmospheric Chemistry and Physics 3: 1–27.CrossRefGoogle Scholar
  8. Bengtsson, L., V.A. Semenov, and O.M. Johannessen. 2004. The early twentieth-century warming in the Arctic—A possible mechanism. Journal of Climate 17: 4045–4057.CrossRefGoogle Scholar
  9. Boe, J., A. Hall, and X. Qu. 2009. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience 2: 341–343.CrossRefGoogle Scholar
  10. Born, A., and A. Levermann. 2010. The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochemistry, Geophysics, Geosystems 11: Q06011.CrossRefGoogle Scholar
  11. Brigham-Grette, J. 2009. Contemporary Arctic change: A paleoclimate deja vu? Proceedings of the National Academy of Sciences of the United States of America 106: 18431–18432.CrossRefGoogle Scholar
  12. Caldeira, K., and L. Wood. 2008. Global and Arctic climate engineering: numerical model studies. Philosophical Transactions of the Royal Society A 366: 4039–4056.CrossRefGoogle Scholar
  13. Carmack, C., F. McLaughlin, G. Whiteman, and T. Homer Dixon. 2012. Detecting and coping with potentially disruptive shocks and flips in complex adaptive Arctic Marine systems: a resilience approach to place and people. Ambio 41(1). doi:10.1007/s13280-011-0225-6.
  14. Chapin, F.S., T.V. Callaghan, Y. Bergeron, M. Fukuda, J.F. Johnstone, G. Juday, and S.A. Zimov. 2004. Global change and the boreal forest: Thresholds, shifting states or gradual change? Ambio 33: 361–365.Google Scholar
  15. Chapin, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310: 657–660.CrossRefGoogle Scholar
  16. Ditlevsen, P.D., M.S. Kristensen, and K.K. Andersen. 2005. The recurrence time of Dansgaard-Oeschger events and limits on the possible periodic component. Journal of Climate 18: 2594–2603.CrossRefGoogle Scholar
  17. Dmitrenko, I.A., S.A. Kirillov, L.B. Tremblay, D. Bauch, J.A. Hölemann, T. Krumpen, H. Kassens, C. Wegner, et al. 2010. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. Journal of Geophysical Research 115: C08010.CrossRefGoogle Scholar
  18. Drijfhout, S., S. Weber, and E. van der Swaluw. 2011. The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dynamics 37: 1575–1586.CrossRefGoogle Scholar
  19. Duarte, C.M., S. Agustí., P. Wassmann, J.M. Arrieta, M. Alcaraz, A. Coello, N. Marbà, I.E. Hendriks, J. Holding, I. García-Zarandona, E. Kritzberg, and D. Vaqué. 2012. Tipping elements in the arctic marine ecosystem. In The Arctic in the Earth System perspective: the role of tipping points, ed. Wassmann, P., Lenton, T.M. Ambio. doi:10.1007/s13280-011-0224-7.
  20. Egede-Nissen, B., and H.D. Venema. 2009. Desperate times, desperate measures: Advancing the geoengineering debate at the Arctic Council. Portagee: International Institute for Sustainable Development (IISD).Google Scholar
  21. Eisenman, I., and J.S. Wettlaufer. 2009. Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of America 106: 28–32.CrossRefGoogle Scholar
  22. Foley, J.A., J.E. Kutzbach, M.T. Coe, and S. Levis. 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371: 52–54.CrossRefGoogle Scholar
  23. Ganopolski, A., and S. Rahmstorf. 2002. Abrupt glacial climate changes due to stochastic resonance. Physical Review Letters 88: 038501.CrossRefGoogle Scholar
  24. Gillett, N.P., D.A. Stone, P.A. Stott, T. Nozawa, A.Y. Karpechko, G.C. Hegerl, M.F. Wehner, and P.D. Jones. 2008. Attribution of polar warming to human influence. Nature Geoscience 1: 750–754.CrossRefGoogle Scholar
  25. Gladwell, M. 2000. The tipping point: How little things can make a big difference. New York: Little Brown.Google Scholar
  26. Hansen, J., M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, et al. 2007. Dangerous human-made interference with climate: A GISS model study. Atmospheric Chemistry and Physics 7: 2287–2312.CrossRefGoogle Scholar
  27. Hartmann, D.L., J.M. Wallace, V. Limpasuvan, D.W.J. Thompson, and J.R. Holton. 2000. Can ozone depletion and global warming interact to produce rapid climate change? Proceedings of the National Academy of Science 97: 1412–1417.CrossRefGoogle Scholar
  28. Hofmann, M., and S. Rahmstorf. 2009. On the stability of the Atlantic meridional overturning circulation. Proceedings of the National Academy of Sciences of the United States of America 106: 20584–20589.CrossRefGoogle Scholar
  29. Holland, M.M., C.M. Bitz, and B. Tremblay. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters 33: L23503.CrossRefGoogle Scholar
  30. Holland, D.M., R.H. Thomas, B. de Young, M.H. Ribergaard, and B. Lyberth. 2008. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience 1: 659–664.CrossRefGoogle Scholar
  31. Huybrechts, P., and J. De Wolde. 1999. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming. Journal of Climate 12: 2169–2188.CrossRefGoogle Scholar
  32. IPCC. 2007. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery M. Tignor, and H.L. Miller. New York: Cambridge University Press.Google Scholar
  33. Jakobsson, M., J. Backman, B. Rudels, J. Nycander, M. Frank, L. Mayer, W. Jokat, F. Sangiorgi, et al. 2007. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447: 986–990. doi:10.1038/nature05924.CrossRefGoogle Scholar
  34. Joos, F., I.C. Prentice, S. Sitch, R. Meyer, G. Hooss, G.-K. Plattner, S. Gerber, and K. Hasselmann. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emissions scenarios. Global Biogeochemical Cycles 15: 891–907.CrossRefGoogle Scholar
  35. Jorgenson, M.T., Y.L. Shur, and E.R. Pullman. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters 33: L02503.CrossRefGoogle Scholar
  36. Joughin, I., S.B. Das, M.A. King, B.E. Smith, I.M. Howat, and T. Moon. 2008. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science 320: 781–783.CrossRefGoogle Scholar
  37. Kaufman, D.S., D.P. Schneider, N.P. McKay, C.M. Ammann, R.S. Bradley, K.R. Briffa, G.H. Miller, B.L. Otto-Bliesner, et al. 2009. Recent Warming Reverses Long-Term Arctic Cooling. Science 325: 1236–1239.CrossRefGoogle Scholar
  38. Kay, J.E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell. 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters 35: L08503.CrossRefGoogle Scholar
  39. Kayen, R.E., and H.J. Lee. 1991. Pleistocene slope instability of gas hydrate-laden sediment of Beaufort Sea margin. Marine Geotechnology 10: 125–141.CrossRefGoogle Scholar
  40. Khvorostyanov, D. V., P. Ciais, G. Krinner, and S. A. Zimov 2008a. Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophysical Research Letters 35: L10703. Add Doi.Google Scholar
  41. Khvorostyanov, D.V., G. Krinner, P. Ciais, M. Heimann, and S.A. Zimov. 2008b. Vulnerability of permafrost carbon to global warming. Part I: model description and the role of heat generated by organic matter decomposition. Tellus B 60B: 250–264.Google Scholar
  42. Kriegler, E., J.W. Hall, H. Held, R. Dawson, and H.J. Schellnhuber. 2009. Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences of the United States of America 106: 5041–5046.CrossRefGoogle Scholar
  43. Kurz, W.A., C.C. Dymond, G. Stinson, G.J. Rampley, E.T. Neilson, A.L. Carroll, T. Ebata, and L. Safranyik. 2008a. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987–990.CrossRefGoogle Scholar
  44. Kurz, W.A., G. Stinson, G.J. Rampley, C.C. Dymond, and E.T. Neilson. 2008b. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences of the United States of America 105: 1551–1555.CrossRefGoogle Scholar
  45. Kwok, R., and D.A. Rothrock. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters 36: L15501.CrossRefGoogle Scholar
  46. Lawrence, D.M., and A.G. Slater. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters 32: L24401.CrossRefGoogle Scholar
  47. Lawrence, D.M., A.G. Slater, R.A. Tomas, M.M. Holland, and C. Deser. 2008. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters 35: L11506.CrossRefGoogle Scholar
  48. Lenton, T.M. 2011a. Beyond 2°C: Redefining dangerous climate change for physical systems. Wiley Interdisciplinary Reviews: Climate Change 2: 451–461.CrossRefGoogle Scholar
  49. Lenton, T.M. 2011b. 2°C or not 2°C? That is the climate question. Nature 473: 7.CrossRefGoogle Scholar
  50. Lenton, T.M. 2011c. Early warning of climate tipping points. Nature Climate Change 1: 201–209.CrossRefGoogle Scholar
  51. Lenton, T.M., H. Held, E. Kriegler, J. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. 2008. Tipping Elements in the Earth’s Climate System. Proceedings of the National Academy of Sciences of the United States of America 105: 1786–1793.CrossRefGoogle Scholar
  52. Levermann, A., J. Bamber, S. Drijfhout, A. Ganopolski, W. Haeberli, N. R. P. Harris, M. Huss, K. Krüger, et al. 2011. Potential climatic transitions with profound impact on Europe: Review of the current state of six ‘tipping elements of the climate system’. Climatic Change: 10.1007/s10584-011-0126-5.
  53. Levermann, A., and A. Born. 2007. Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model. Geophysical Research Letters 34: L24605.CrossRefGoogle Scholar
  54. Levitus, S., G. Matishov, D. Seidov, and I. Smolyar. 2009. Barents Sea multidecadal variability. Geophysical Research Letters 36: L19604.CrossRefGoogle Scholar
  55. Liu, Z., B.L. Otto-Bliesner, F. He, E.C. Brady, R. Tomas, P.U. Clark, A.E. Carlson, J. Lynch-Stieglitz, et al. 2009. Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science 325: 310–314.CrossRefGoogle Scholar
  56. Lucht, W., I.C. Prentice, R.B. Myneni, S. Sitch, P. Friedlingstein, W. Cramer, P. Bousquet, W. Buermann, et al. 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296: 1687–1689.CrossRefGoogle Scholar
  57. Lucht, W., S. Schaphoff, T. Erbrecht, U. Heyder, and W. Cramer. 2006. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance and Management 1: 6. doi:10.1186/1750-0680-1-6.CrossRefGoogle Scholar
  58. Maslanik, J., S. Drobot, C. Fowler, W. Emery, and R. Barry. 2007. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters 34: L03711.CrossRefGoogle Scholar
  59. McConnell, J.R., R. Edwards, G.L. Kok, M.G. Flanner, C.S. Zender, E.S. Saltzman, J.R. Banta, D.R. Pasteris, et al. 2007. 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing. Science 317: 1381–1384.CrossRefGoogle Scholar
  60. Mote, T.L. 2007. Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophysical Research Letters 34: L22507.CrossRefGoogle Scholar
  61. Nghiem, S.V., I.G. Rigor, D.K. Perovich, P. Clemente-Colon, J.W. Weatherly, and G. Neumann. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters 34: L19504.CrossRefGoogle Scholar
  62. Notz, D. 2009. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proceedings of the National Academy of Sciences of the United States of America 106: 20590–20595.CrossRefGoogle Scholar
  63. Overland, J.E., and M. Wang. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62: 1–9.CrossRefGoogle Scholar
  64. Peng, T. H. 1995. Future climate surprises. In Future Climates of the World: A Modelling Perspective, ed. A. Henderson-Sellers, pp 517–535: Elsevier.Google Scholar
  65. Perovich, D.K., B. Light, H. Eicken, K.F. Jones, K. Runciman, and S.V. Nghiem. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34: L19505.CrossRefGoogle Scholar
  66. Perovich, D.K., J.A. Richter-Menge, K.F. Jones, B. Light, et al. 2008. Sunlight, water, ice: Extreme Arctic sea ice melt during the summer of 2007. Geophysical Research Letters 35: L11501.CrossRefGoogle Scholar
  67. Petoukhov, V., and V.A. Semenov. 2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journal of Geophysical. Research. 115: D21111.Google Scholar
  68. Pfeffer, W.T., J.T. Harper, and S. O’Neel. 2008. Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science 321: 1340–1343.CrossRefGoogle Scholar
  69. Pritchard, H.D., R.J. Arthern, D.G. Vaughan, and L.A. Edwards. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461: 971–975. doi:10.1038/nature08471.CrossRefGoogle Scholar
  70. Proshutinsky, A., R.H. Bourke, and F.A. McLaughlin 2002. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophysical Research Letters 29. doi 10.1029/2002GL015847.
  71. Proshutinsky, A., R. Krishfield, M.-L. Timmermans, J. Toole, E. Carmack, F. McLaughlin, W. J. Williams, S. Zimmermann, et al. 2009. Beaufort Gyre freshwater reservoir: State and variability from observations. Journal of Geophysical Research. 114: C00A10.Google Scholar
  72. Rawlins, M.A., M.C. Serreze, R. Schroeder, X. Zhang, K.C. McDonald, et al. 2007. Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007. Environmental Research Letters 4: 045011.CrossRefGoogle Scholar
  73. Reagan, M.T., and G.J. Moridis. 2007. Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophysical Research Letters 34: L22709.CrossRefGoogle Scholar
  74. Ridley, J., J. Gregory, P. Huybrechts, and J. Lowe. 2010. Thresholds for irreversible decline of the Greenland ice sheet. Climate Dynamics 35: 1065–1073.CrossRefGoogle Scholar
  75. Rignot, E., J.E. Box, E. Burgess, E. Hanna, et al. 2007. Mass balance of the Greenland ice sheet from 1958 to 2008. Geophysical Research Letters 35: L20502.CrossRefGoogle Scholar
  76. Rigor, I.G., and J.M. Wallace. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters 31: L09401.CrossRefGoogle Scholar
  77. Schaphoff, S., W. Lucht, D. Gerten, S. Sitch, W. Cramer, and I.C. Prentice. 2006. Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change 74: 97–122.CrossRefGoogle Scholar
  78. Schellnhuber, H.J., W. Cramer, N. Nakicenovic, T. Wigley, and G. Yohe. 2006. Avoiding dangerous climate change. Cambridge: Cambridge University Press.Google Scholar
  79. Scholze, M., W. Knorr, N.W. Arnell, and I.C. Prentice. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103: 13116–13120.CrossRefGoogle Scholar
  80. Screen, J., and I. Simmonds. 2011. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Climate Dynamics: 1–14. doi:10.1007/s00382-011-1105-2.
  81. Screen, J.A., and I. Simmonds. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464: 1334–1337.CrossRefGoogle Scholar
  82. Semenov, V.A., W. Park, and M. Latif. 2009. Barents Sea inflow shutdown: A new mechanism for rapid climate changes. Geophysical Research Letters 36: L14709.CrossRefGoogle Scholar
  83. Shakhova, N., I. Semiletov, A. Salyuk, and D. Kosmach. 2008. Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? Geophysical Research Abstracts 10, EGU2008-A-01526. Google Scholar
  84. Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327: 1246–1250. doi:10.1126/science.1182221.CrossRefGoogle Scholar
  85. Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky. 2006. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophysical Research Letters 33: L08605.CrossRefGoogle Scholar
  86. Shindell, D., and G. Faluvegi. 2009. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2: 294–300.CrossRefGoogle Scholar
  87. Shindell, D.T., D. Rind, and P. Lonergan. 1998. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392: 589–592.CrossRefGoogle Scholar
  88. Simmonds, I., and K. Keay. 2009. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophysical Research Letters 36: L19715.CrossRefGoogle Scholar
  89. Sitch, S., C. Huntingford, N. Gedney, P.E. Levy, M. Lomas, S.L. Piao, R. Betts, P. Ciais, et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 2015–2039.CrossRefGoogle Scholar
  90. Smith, J.B., S.H. Schneider, M. Oppenheimer, G.W. Yohe, W. Hare, M.D. Mastrandrea, A. Patwardhan, I. Burton, et al. 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proceedings of the National Academy of Sciences of the United States of America 106: 4133–4137.CrossRefGoogle Scholar
  91. Spielhagen, R.F., K. Werner, S.A. Sörensen, K. Zamelczyk, E. Kandiano, G. Budeus, K. Husum, T.M. Marchitto, et al. 2011. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331: 450–453. doi:10.1126/science.1197397.CrossRefGoogle Scholar
  92. Steffensen, J.P., K.K. Andersen, M. Bigler, H.B. Clausen, D. Dahl-Jensen, H. Fischer, K. Goto-Azuma, M. Hansson, et al. 2008. High-resolution Greenland Ice Core Data show abrupt climate change happens in few years. Science 321: 680–684.CrossRefGoogle Scholar
  93. Stephenson, S.R., L.C. Smith, and J.A. Agnew. 2011. Divergent long-term trajectories of human access to the Arctic. Nature Climate Change 1: 156–160.CrossRefGoogle Scholar
  94. Stommel, H. 1961. Thermohaline convection with two stable regimes of flow. Tellus 13: 224–230.CrossRefGoogle Scholar
  95. Stroeve, J., M.M. Holland, W. Meier, T. Scambos, and M. Serreze. 2007. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters 34: L09501.CrossRefGoogle Scholar
  96. Stroeve, J.C., J. Maslanik, M.C. Serreze, I. Rigor, W. Meier, and C. Fowler. 2011. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophysical Research Letters 38: L02502.CrossRefGoogle Scholar
  97. Thompson, D.W.J., J.M. Wallace, J.J. Kennedy, and P.D. Jones. 2010. An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467: 444–447.CrossRefGoogle Scholar
  98. Tietsche, S., D. Notz, J.H. Jungclaus, and J. Marotzke. 2011. Recovery mechanisms of Arctic summer sea ice. Geophysical Research Letters 38: L02707.CrossRefGoogle Scholar
  99. Tilmes, S., R. Muller, and R. Salawitch. 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320: 1201–1204.CrossRefGoogle Scholar
  100. Vage, K., R.S. Pickart, V. Thierry, G. Reverdin, C.M. Lee, B. Petrie, T.A. Agnew, A. Wong, et al. 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience 2: 67–72.CrossRefGoogle Scholar
  101. Valdes, P. 2011. Built for stability. Nature Geoscience 4: 414–416. doi:10.1038/ngeo1200.CrossRefGoogle Scholar
  102. van de Wal, R.S.W., W. Boot, M.R. van den Broeke, C.J.P.P. Smeets, C.H. Reijmer, J.J.A. Donker, and J. Oerlemans. 2008. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science 321: 111–113.CrossRefGoogle Scholar
  103. Wadhams, P. 2012. Ice cover, ice thickness and tipping points. Ambio 41(1). doi:10.1007/s13280-011-0222-9.
  104. Weaver, A.J., O.A. Saenko, P.U. Clark, and J.X. Mitrovica. 2000. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299: 1709–1713.CrossRefGoogle Scholar
  105. Wieczorek, S., P. Ashwin, C.M. Luke, and P.M. Cox. 2011. Excitability in ramped systems: The compost-bomb instability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467: 1243–1269.CrossRefGoogle Scholar
  106. Winton, M. 2006. Does the Arctic sea ice have a tipping point? Geophysical Research Letters 33: L23504. doi:10.1029/2006GL028017.CrossRefGoogle Scholar
  107. Woodgate, R., K. Aagaard, and T.J. Weingartner. 2006. Interannual changes in the Bering Strait flux of volume, heat, freshwater between 1991 and 2004. Geophysical Research Letters 33: L15609.CrossRefGoogle Scholar
  108. Yashayaev, I., and J.W. Loder. 2009. Enhanced production of Labrador Sea Water in 2008. Geophysical Research Letters 36: L01606.CrossRefGoogle Scholar
  109. Yin, J., M.E. Schlesinger, and R.J. Stouffer. 2009. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience 2: 262–266.CrossRefGoogle Scholar
  110. Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J.C. Comiso. 2008. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophysical Research Letters 35: L22701.CrossRefGoogle Scholar
  111. Zhou, S., and P.C. Flynn. 2005. Geoengineering downwelling ocean currents: A cost assessment. Climatic Change 71: 203–220.CrossRefGoogle Scholar
  112. Zimov, S.A., V.I. Chuprynin, A.P. Oreshko, F.S.C. Iii, J.F. Reynolds, and M.C. Chapin. 1995. Steppe–Tundra transition: A herbivore-driven biome shift at the end of the pleistocene. The American Naturalist 146: 765–794.CrossRefGoogle Scholar
  113. Zimov, S.A., E.A.G. Schuur, and F.S. Chapin. 2006. Permafrost and the Global Carbon Budget. Science 312: 1612–1613.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.College of Life and Environmental Sciences, Hatherly LaboratoriesUniversity of ExeterExeterUK

Personalised recommendations