, Volume 40, Issue 5, pp 447–456 | Cite as

Climate Warming and Pikeperch Year-Class Catches in the Baltic Sea

  • Zeynep Pekcan-Hekim
  • Lauri Urho
  • Heikki Auvinen
  • Outi Heikinheimo
  • Jyrki Lappalainen
  • Jari Raitaniemi
  • Pirkko Söderkultalahti


Climate change scenarios concerning the Baltic Sea predict increase in surface water temperatures. Pikeperch (Sander lucioperca (L.)) inhabits the coastal areas of the northern Baltic Sea and is an important fish species for the Finnish fisheries. The year-class strength of pikeperch varies strongly between years and significantly depends on water temperature. We aimed to study the effects of changing temperature conditions on pikeperch fisheries and distribution based on commercial catch data from the period 1980–2008 in the Finnish coastal areas of the Baltic Sea. The results indicated that warmer summers will produce stronger pikeperch year-classes that consequently contribute significantly to the future catches. The average temperature in June–July explained 40% of the variation in the year-class catches in the Gulf of Finland and 73% in July–August in the Archipelago Sea. During the study period, the distribution of pikeperch catches expanded toward north along the coasts of the Bothnian Sea.


Temperature Year-class strength Pikeperch Recruitment Baltic Sea Coastal fisheries 



Antti Lappalainen and two anonymous reviewers provided valuable comments that substantially improved the paper. We thank Meri Kallasvuo for the help with the graphical work and Karl Sundman for age determination and sample processing. The project is funded by the Finnish Ministry of Agriculture and Forestry, Climate Change Adaptation Research Program ISTO.


  1. Barnett, T.P., J.C. Adam, and D.P. Lettenmaier. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303–309.CrossRefGoogle Scholar
  2. Böhling, P., R. Hudd, H. Lehtonen, P. Karås, E. Neuman, and G. Thoresson. 1991. Variations in year-class strength of different perch (Perca fluviatilis) populations in the Baltic Sea with special reference to temperature and pollution. Canadian Journal of Fisheries and Aquatic Sciences 48: 1181–1187.CrossRefGoogle Scholar
  3. Brander, K.M. 2007. Global fish production and climate change. Proceedings of the National Academy of Sciences 104: 19709–19714.CrossRefGoogle Scholar
  4. Christie, G.C., and H.A. Regier. 1988. Measures of optimal thermal habitat and their relations to yields of four commercial fish species. Canadian Journal of Fisheries and Aquatic Sciences 45: 301–314.CrossRefGoogle Scholar
  5. Colby, P.J., and H. Lehtonen. 1994. Suggested collapse of the zander Stizostedion lucioperca (L.), populations in northern and central Finland through comparisons with North American walleye, Stizostedion vitreum (Mitchhill.). Aqua Fennica 24: 9–20.Google Scholar
  6. Cushing, D.H. 1982. Climate and fisheries. New York: Academic Press.Google Scholar
  7. Döscher, R., and M.H.E. Meier. 2004. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. AMBIO 33: 242–248.Google Scholar
  8. Edwards, M., and A.J. Richardson. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.CrossRefGoogle Scholar
  9. Härmä, M., A. Lappalainen, and L. Urho. 2008. Reproduction areas of roach (Rutilus rutilus) in the northern Baltic Sea: Potential effects of climate change. Canadian Journal of Fisheries and Aquatic Sciences 65: 2678–2688.CrossRefGoogle Scholar
  10. Heikinheimo, O., J. Setälä, K. Saarni, and J. Raitaniemi. 2006. Impacts of mesh-size regulation of gillnets on the pikeperch fisheries in the Archipelago Sea, Finland. Fisheries Research 77: 192–199.CrossRefGoogle Scholar
  11. HELCOM. 2007. Climate change in the Baltic Sea Area. HELCOM Thematic Assessment 2007. Baltic Sea Environmental Proceedings No. 111.
  12. Intergovernmental Panel on Climate Change. 2007. Synthesis report an assessment of the intergovernmental panel on climate change.Google Scholar
  13. Kalatalous ajassa. 1993. Tilastoja ja tietoa kalastuksesta, kalanviljelystä ja kalakaupasta vuosina 1978–1992. Riista-ja kalatalouden tutkimuslaitos, SVT Ympäristö 11, Helsinki (in Finnish).Google Scholar
  14. Kjellman, J., J. Lappalainen, and L. Urho. 2001. Influence of temperature on size and abundance dynamics of age-0 perch and pikeperch. Fisheries Research 53: 47–56.CrossRefGoogle Scholar
  15. Kjellman, J., J. Lappalainen, L. Urho, and R. Hudd. 2003. Early determination of perch and pikeperch recruitment in the northern Baltic Sea. Hydrobiologia 495: 181–191.CrossRefGoogle Scholar
  16. Lappalainen, A. 2002. The effects of recent eutrophication on freshwater fish communities and fishery on the northern coast of the Gulf of Finland, Baltic Sea. PhD Thesis, Game and Fisheries Research Institute.Google Scholar
  17. Lappalainen, A., and L. Urho. 2006. Young-of-the-year-fish composition in small coastal bays in the northern Baltic Sea, surveyed with beach seine and small underwater detonations. Boreal Environment Research 11: 431–440.Google Scholar
  18. Lappalainen, A., P. Söderkultalahti, and T. Wiik. 2002. Changes in the commercial fishery for pikeperch (Stizostedion lucioperca) on the Finnish coast from 1980 to 1999—Consequences of environmental and economic factors. Archive of Fishery and Marine Research 49: 199–212.Google Scholar
  19. Lappalainen, J., and H. Lehtonen. 1995. Year-class strength of pikeperch (Stizostedion lucioperca L.) in relation to environmental factors in a shallow Baltic Bay. Annales Zoologici Fennici 32: 411–419.Google Scholar
  20. Lappalainen, J., and H. Lehtonen. 2002. Spatial covariations in year-class strengths of European whitefish, Eurasian perch and pikeperch in the Baltic Sea during the 1970’s and 1980’s. Archives für Hydrobiologie Special Issues on Advances in Limnology 57: 657–668.Google Scholar
  21. Lappalainen, J., V. Erm, and H. Lehtonen. 1995. Pikeperch Stizostedion lucioperca (L.), catch in relation to juvenile density and water temperature in Pärnu Bay, Estonia. Fisheries Management and Ecology 2: 113–120.CrossRefGoogle Scholar
  22. Lappalainen, J., H. Dörner, and K. Wysujack. 2003. Reproduction biology of pikeperch (Sander lucioperca (L.))—A review. Ecology of Freshwater Fish 12: 95–106.CrossRefGoogle Scholar
  23. Lappalainen, J., T. Malinen, M. Rahikainen, M. Vinni, K. Nyberg, J. Ruuhijärvi, and M. Salminen. 2005. Temperature dependent growth and yields of pikeperch, Sander lucioperca, in Finnish lakes. Fisheries Management and Ecology 12: 27–35.Google Scholar
  24. Lappalainen, J., M. Milardi, K. Nyberg, and A. Venäläinen. 2009. Effects of water temperature on year-class strengths and growth patterns of pikeperch (Sander lucioperca (L.)) in the brackish Baltic Sea. Aquatic Ecology 43: 181–191.CrossRefGoogle Scholar
  25. Lehtonen, H. 1983. Stocks of pike-perch (Stizostedion lucioperca L.) and their management in the Archipelago Sea and the Gulf of Finland. Finnish Fisheries Research 5: 1–16.Google Scholar
  26. Lehtonen, H., and J. Toivonen. 1987. Migration of pike-perch, Stizostedion lucioperca (L.), in different coastal waters in the Baltic Sea. Finnish Fisheries Research 7: 24–30.Google Scholar
  27. Lehtonen, H., S. Hansson, and H. Winkler. 1996. Biology and exploitation of pikeperch Stizostedion lucioperca (L.), in the Baltic Sea area. Annales Zoologici Fennici 33: 525–535.Google Scholar
  28. Lehmann, A., P. Lorenz, and D. Jacob. 2004. Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters 31: L21308. doi: 10.1029/2004GL020830.CrossRefGoogle Scholar
  29. Ljunggren, L. 2002. Growth response of pikeperch larvae in relation to body size and zooplankton abundance. Journal of Fish Biology 60: 405–414.CrossRefGoogle Scholar
  30. MacKenzie, B.R., H. Gislason, C. Möllmann, and F.W. Köster. 2007. Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13: 1348–1367.CrossRefGoogle Scholar
  31. Mantzouni, I., and B.R. McKenzie. 2010. Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends. Proceedings of the Royal Society 277: 1867–1874.CrossRefGoogle Scholar
  32. Marshall, T.R. 1977. Morphological, physiological, and ethological differences between walleye Stizostedion vitreum vitreum and pikeperch S. lucioperca. Journal of the Fisheries Research Board of Canada 34: 1515–1523.CrossRefGoogle Scholar
  33. McFarlane, G.A., J.R. King, and R.J. Beamish. 2000. Have there been recent changes in the climate? Ask the fish. Progress in Oceanography 47: 147–169.CrossRefGoogle Scholar
  34. Meier, M.H.E., R. Döscher, and A. Halkka. 2004. Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. AMBIO 33: 249–256.Google Scholar
  35. Meier, M.H.E., E. Kjellström, and L.P. Graham. 2006. Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophysical Research Letters 33: L15705. doi: 10.1029/2006GL026488.CrossRefGoogle Scholar
  36. Myers, R.A., G. Mertz, and J. Bridson. 1997. Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences 54: 1400–1407.CrossRefGoogle Scholar
  37. Official Statistics of Finland. 2008. Commercial marine fishery 2008. Finnish Game and Fisheries Research Institute, Tilastoja 3/2009.Google Scholar
  38. Pepin, P. 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48: 503–518.CrossRefGoogle Scholar
  39. Pepin, P., and R.A. Myers. 1991. Significance of egg and larval size to recruitment variability of temperate marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48: 1820–1828.CrossRefGoogle Scholar
  40. Pitkänen, H., J. Lehtoranta, and A. Räike. 2001. Internal nutrient fluxes counteract decreases in external load: The case of the estuarial eastern Gulf of Finland, Baltic Sea. AMBIO 30: 195–201.Google Scholar
  41. Roessig, J.M., C.M. Woodley, J.J. Cech, and L.J. Hansen. 2004. Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries 14: 251–275.CrossRefGoogle Scholar
  42. Rose, G.A. 2005. On distributional responses of North Atlantic fish to climate change. ICES Journal of Marine Sciences 62: 1360–1374.CrossRefGoogle Scholar
  43. Ruosteenoja, K., H. Tuomenvirta, and K. Jylhä. 2007. GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Climatic Change 81: 193–208.CrossRefGoogle Scholar
  44. Säisä, M., M. Salminen, M.-L. Koljonen, and J. Ruuhijärvi. 2010. Coastal and freshwater pikeperch (Sander lucioperca) populations differ genetically in the Baltic Sea basin. Hereditas. 147: 205–214. doi: 10.1111/j.1601-5223.2010.02184.x.Google Scholar
  45. Salmi, J., P. Salmi, and P. Moilanen. 2010. Commercial fishing and the cormorant fishers’ perspectives. Riista-ja kalatalousSelvityksiä 1: 18.Google Scholar
  46. Saulamo, K., and G. Thoresson. 2005. Management of pikeperch migrating over management areas in a Baltic Archipelago area. AMBIO 34: 120–124.Google Scholar
  47. Seinä, A., and J. Peltola. 1991. Duration of the ice seasons and statistics of fast ice thickness along the Finnish coast. Finnish Marine Research 258: 1961–1990.Google Scholar
  48. Stigebrandt, A., and B.G. Gustafsson. 2003. Response of the Baltic Sea to climate change—Theory and observations. Journal of Sea Research 49: 243–256.CrossRefGoogle Scholar
  49. Toivonen, A.-L., P. Moilanen, J. Stigzelius, and E. Railo. 2003. Suomi kalastaa 2001. Lajisaaliit. Kala- ja riistaraportteja 283. Finnish Game and Fisheries Research Institute, Helsinki (in Finnish).Google Scholar
  50. Vahtera, E., J. Laanemets, J. Pavelson, M. Huttunen, and K. Kononen. 2005. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. Journal of Marine Systems 58: 67–82.CrossRefGoogle Scholar
  51. Venäläinen, A., K. Jylhä, T. Kilpeläinen, S. Saku, H. Tuomenvirta, A. Vajda, and K. Ruosteenoja. 2009. Reoccurrence of Heavy precipitation, dry spells and deep snow cover in Finland base observations. Boreal Environment Research 14: 166–172.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Zeynep Pekcan-Hekim
    • 1
    • 2
  • Lauri Urho
    • 1
  • Heikki Auvinen
    • 3
  • Outi Heikinheimo
    • 1
  • Jyrki Lappalainen
    • 2
  • Jari Raitaniemi
    • 3
  • Pirkko Söderkultalahti
    • 1
  1. 1.Finnish Game and Fisheries Research InstituteHelsinkiFinland
  2. 2.Department of Environmental SciencesUniversity of HelsinkiUniversity of HelsinkiFinland
  3. 3.Finnish Game and Fisheries Research InstituteTurkuFinland

Personalised recommendations