, Volume 39, Issue 3, pp 257–265 | Cite as

The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene

  • Johan RockströmEmail author
  • Louise Karlberg


Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape.


Green Water Green Revolution Conservation Agriculture Blue Water Hockey Stick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barron, J., and G. Okwach. 2005. Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya. Agricultural Water Management 74(1): 1–21.CrossRefGoogle Scholar
  2. Barron, J., J. Rockström, F. Gichuki, and N. Hatibu. 2003. Dry spell analysis and maize yields for two semi-arid locations in East Africa. Agricultural and Forest Meteorology 117(1–2): 23–37.CrossRefGoogle Scholar
  3. Battisti, D.S., and R.L. Naylor. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240–244.CrossRefGoogle Scholar
  4. Calder, I.R. 1999. The blue revolution: land use and integrated water resources management. London: Earthscan.Google Scholar
  5. Canadell, J.G., D. Le Quéré, M.R. Raupach, C.R. Field, E. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866–18870.CrossRefGoogle Scholar
  6. Carpenter, S.R., H.A. Mooney, J. Agard, et al. 2009. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America 106(5): 1305–1312.CrossRefGoogle Scholar
  7. Challinor, A.J., and T.R. Wheeler. 2008. Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agriculture and Forest Meteorology 148: 1062–1077.CrossRefGoogle Scholar
  8. Chapin, F.S. III, Kofinas, G.P., and Folke, C., 2010. Principles of ecosystem stewardship. Resilience-based natural resources management in a changing world, 401 pp. New York: Springer.Google Scholar
  9. Constanza, R., L. Graumlich, W. Steffen, et al. 2007. Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio 36: 522–527.CrossRefGoogle Scholar
  10. Conway, G. 1997. The doubly green revolution. Food for all in the twenty-first century. New York: Penguin Books.Google Scholar
  11. Cooper, P.J.M., J. Dimes, K.P.C. Rao, B. Shapiro, B. Shiferaw, and S. Twomlow. 2008. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agriculture Ecosystems and Environment 126: 24–35.CrossRefGoogle Scholar
  12. Derpsch, R. 1998. Historical review of no-tillage cultivation of crops. In Conservation Tillage for Sustainable Agriculture. Proceedings from an International Workshop, Harare, 22–27 June. Part II (Annexes), J. Benites, E. Chuma, R. Fowler, J. Kienzle, K. Molapong, J. Manu, I. Nyagumbo, K. Steiner, and R. van Veenhuizen, eds. Eschborn, Germany: Deutsche Gesellschaft fur Technische Zusammenarbeit.Google Scholar
  13. Eisenman, I., and J.S. Wettlaufer. 2009. Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of Americ 106(1): 28–32.CrossRefGoogle Scholar
  14. Emberson, L.D., P. Büker, M.R. Ashmore, G. Mills, L.S. Jackson, M. Agrawal, M.D. Atikuzzaman, S. Cinderby, M. Engardt, C. Jamir, K. Kobayashi, N.T.K. Oanh, Q.F. Quadir, and A. Wahid. 2009. A comparison of North American and Asian exposure response data for ozone effects on crop yields. Atmospheric Environment 43: 1945–1953.CrossRefGoogle Scholar
  15. Enfors, E.I., and L.J. Gordon. 2008. Dealing with drought: the challenge of using water system technologies to break dryland poverty traps. Global Environmental Change 18(4): 607–616.CrossRefGoogle Scholar
  16. Falkenmark, M. 1986. Fresh water—time for a modified approach. Ambio 15(4): 192–200.Google Scholar
  17. Falkenmark, M., and J. Rockström. 2004. Balancing water for humans and nature. The new approach in ecohydrology, pp 247. London: Earthscan.Google Scholar
  18. Falkenmark, M., J. Rockström, and L. Karlberg. 2009. Present and future water requirements for feeding humanity. Food Security 1: 59–69.CrossRefGoogle Scholar
  19. Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz, I.C. Prentice, N. Ramankutty, and P.K. Snyder. 2005. Global consequences of land use. Science 309: 570–574.CrossRefGoogle Scholar
  20. Folke, C., and J. Rockström. 2009. Turbulent times. Global Environmental Change 19: 1–3 (editorial).Google Scholar
  21. Fox, P., and J. Rockström. 2000. Water harvesting for supplemental irrigation of cereal crops to overcome intra-seasonal dry-spells in the Sahel. Physics and Chemistry of the Earth, Part B Hydrology 25(3): 289–296.CrossRefGoogle Scholar
  22. Fox, P., and J. Rockström. 2003. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agricultural Water Management 61(1): 29–50.CrossRefGoogle Scholar
  23. Gordon, L.J., G.D. Peterson, and E.M. Bennett. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution 23(4): 211–219.CrossRefGoogle Scholar
  24. Hansen, J., M. Sato, P. Kharecha, D. Beerling, R. Berner, V. Masson-Delmotte, M. Pagani, M. Raymo, D.L. Royer, and J.C. Zachos. 2008. Target atmospheric CO2: where should humanity aim? Open Atmospheric Science Journal 2: 217–231. doi: 10.2174/1874282300802010217.CrossRefGoogle Scholar
  25. IAASTD. 2009. Agriculture at the crossroads. Global summary for decision makers. International assessment of agricultural knowledge, science and technology, p 38. Washington: Island Press.Google Scholar
  26. International Energy Agency. 2008. World energy outlook, p 555 Paris: OECD.Google Scholar
  27. Irz, X., and T. Roe. 2000. Can the world feed itself? Some insights from growth theory. Agrecon 39(3): 513–528.Google Scholar
  28. Karlberg, L., J. Rockström, and M. Falkenmark. 2009. Water resource implications of upgrading rainfed agriculture—focus on green and blue water trade-offs. In Rainfed agriculture—unlocking the potential. comprehensive assessment of water management in agriculture, series vol. 7, ed. S. Wani, J. Rockström, and T. Oweis. Wallingford, UK: CABI Publication.Google Scholar
  29. King, J., C. Brown, and H. Sabet. 2003. A scenario-based approach to environmental flow assessments for rivers. River Research and Applications 19: 619–639.CrossRefGoogle Scholar
  30. Landers, J.N., H. Mattana Saturnio, P.L. de Freitas, and R. Trecenti. 2001. Experiences with farmer clubs in dissemination of zero tillage in tropical Brazil. In Conservation agriculture, a worldwide challenge, L. García-Torres, J. Benites, and A. Martínez-Vilela, eds., Rome: Food and Agriculture Organization.Google Scholar
  31. Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. 2008. Tipping elements in Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of Americ 105: 1786–1793.CrossRefGoogle Scholar
  32. Li, K.Y., M.T. Coe, N. Ramankutty, and R. De Jong. 2007. Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology 337: 258–268.CrossRefGoogle Scholar
  33. Long, S.P., E.A. Ainsworth, A.D.B. Leakey, J. Nosberger, and D.R. Ort. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 1918–1921.CrossRefGoogle Scholar
  34. Lovelock, J. 2006. The revenge of GAIA, pp 178. London: Penguin Books.Google Scholar
  35. MEA, 2005. Millennium ecosystem assessment, 2005. Ecosystems and human well-being: synthesis. Washington: Island Press.Google Scholar
  36. Oweis, T. 1997. Supplemental irrigation: a highly efficient water-use practice. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas.Google Scholar
  37. Ramankutty, N., A.T. Evan, C. Monfreda, and J.A. Foley. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year2000. Global Biogeochemical Cycles 22: GB1003. doi: 10.1029/2007GB002952.CrossRefGoogle Scholar
  38. Reid, W., Bréchignac, C., Tseh Lee, Yuan. 2009. Earth system research priorities. Science 325(5938): 245.Google Scholar
  39. Richardson, K., Steffen, W., Schellnhuber, J., et al. 2009. Climate changeglobal risks, challenges and decisions, p 39. Synthesis report. Denmark: International Alliance of Research Universities, University of Copenhagen.Google Scholar
  40. Rockström, J. 2003. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture. Royal Society Transactions B Biological Sciences 358(1440): 1997–2009.CrossRefGoogle Scholar
  41. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley. 2009c. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14(2): 32.Google Scholar
  42. Rockström, J., and Karlberg, L. 2009. Zooming in on the global hotspots of rainfed agriculture in water-constrained environments. In Rainfed agriculture: unlocking the potential, pp 36–43. Comprehensive assessment of water management in agriculture series, eds. Wani, S.P., J. Rockström, and T. Oweis. Wallingford: CABI.Google Scholar
  43. Rockström, J., M. Falkenmark, L. Karlberg, H. Hoff, S. Rost, and D. Gerten. 2009a. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resources Research 45: W00A12. doi: 10.1029/2007WR006767.CrossRefGoogle Scholar
  44. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley. 2009b. A safe operating space for humanity. Nature 461: 472–475. doi: 10.1038/461472a.CrossRefGoogle Scholar
  45. Rockström, J., P. Kaumbutho, J. Mwalley, A.W. Nzabi, M. Temesgen, L. Mawenya, J. Barron, J. Mutua, and S. Damgaard-Larsen. 2009d. Conservation farming strategies in East and Southern Africa: yields and rain water productivity from on-farm action research. Soil and Tillage Research 103(1): 23–32.CrossRefGoogle Scholar
  46. Rockström, J., K. Vohland, W. Lucht, H. Lotze-Campen, E.U. von Weizsäcker, and T. Banuri. 2010a. Making progress within and beyond borders. In Global sustainability: a nobel cause, ed. H.J. Schellnhuber, M. Molina, N. Stern, V. Huber, and S. Kadner, 33–48. Cambridge: Cambridge University Press.Google Scholar
  47. Rockström, J., L. Karlberg, S.P. Wani, J. Barron, N. Hatibu, T. Oweis, A. Bruggeman, J. Farahani, and Z. Qiang. 2010b. Managing water in rainfed agriculture—the need for a paradigm shift. Agricultural Water Management 97(4): 543–550.CrossRefGoogle Scholar
  48. Rost, S., D. Gerten, H. Hoff, W. Lucht, M. Falkenmark, and J. Rockström. 2009. Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters 4. doi: 10.1088/1748-9326/4/4/044002.
  49. Savenije, H.H.G. 1996. The runoff coefficient as key to moisture recycling. Journal of Hydrology 176: 219–225.CrossRefGoogle Scholar
  50. Scanlon, B.R., I. Jolly, M. Sophocleous, and L. Zhang. 2007. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resources Research 43. doi: 10.1029/2006WR005486.
  51. Scheffer, M., S.R. Carpenter, J.A. Foley, C. Folke, and B.H. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefGoogle Scholar
  52. Schellnhuber, H.C. 2009. Tipping elements in the earth system. Proceedings of the National Academy of Sciences of the United States of Americ 106(49): 20561–20563.CrossRefGoogle Scholar
  53. SEI (Stockholm Environment Institute). 2005. Sustainable pathways to attain the millennium development goalsassessing the role of water, energy and sanitation. Document prepared for the UN World Summit, 14 September, New York, Stockholm.Google Scholar
  54. Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science 5: 1246–1250.CrossRefGoogle Scholar
  55. Siegert, K. 1994. Introduction to water harvesting: Some basic principles for planning, design and monitoring. In Water harvesting for improved agricultural production. Proceedings of the FAO expert consultation, 21–25 November 1993, Cairo. Water report 3. Rome: Food and Agriculture Organization.Google Scholar
  56. Steffen, W., A. Sanderson, J. Jäger, P.D. Tyson, B. Moore III, P.A. Matson, K. Richardson, F. Oldfield, H.-J. Schellnhuber, B.L. Turner II, and R.J. Wassn. 2004. Global change and the earth system: a planet under pressure. Heidelberg: Springer Verlag.Google Scholar
  57. Steffen, W., P.J. Crutzen, and J.R. McNeill. 2007. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36: 614–621.CrossRefGoogle Scholar
  58. Sullivan, C.A. and C. Huntingford. 2009. Water resources, climate change and human vulnerability. 18th World IMACS/MODSIM Congress, Cairns, Australia 13–17 July 2009.Google Scholar
  59. Tubiello, F.N., and F. Ewert. 2002. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy 18: 57–74.CrossRefGoogle Scholar
  60. UN DESA. 2009. World population prospects—the 2008 prospects highlights, p s107. Population Division, United Nations Department of Economic and Social Affairs. Working Paper No. ESA/P/WP.210.Google Scholar
  61. Walker, B.H., N. Abel, J.M. Anderies, and P. Ryan. 2009. Resilience, adaptability and transformability in the Goulburn-Broken catchment, Australia. Ecology and Society 14(1): 12.Google Scholar
  62. Wani, S.P., P.K. Joshi, K.V. Raju, T.K. Sreedevi, J.M. Wilson, A. Shah, P.G. Diwakar, K. Palanisami, S. Marimuthu, A.K. Jha, Y.S. Ramakrishna, S.S.S. Meenakshi, and M. D’Souza. 2008. Community watershed as a growth engine for development of dryland areas. A comprehensive assessment of watershed programs in India. Global theme on agroecosystems, 156 pp. Report No 47. Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Ministry of Agriculture and Ministry of Rural Development.Google Scholar
  63. WBGU. 2009. Solving the climate dilemma: the budget approach, p 51 Special report of the German Advisory Council on global change. Berlin: Germany.Google Scholar
  64. World Bank. 2000. Spurring agricultural and rural development. In can africa claim the 21st century? Washington: World Bank.Google Scholar
  65. World Bank. 2005. Agricultural growth for the poor: an agenda for development. Washington: World Bank.Google Scholar
  66. World Bank. 2008. World development report: agriculture for development. Washington: World Bank.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  1. 1.Stockholm Environment Institute and Stockholm Resilience CentreStockholmSweden

Personalised recommendations