Advertisement

A data reduction approach using hypergraphs to visualize communities and brokers in social networks

  • Luís Cavique
  • Nuno C. Marques
  • António Gonçalves
Review Article
  • 99 Downloads

Abstract

The comprehension of social network phenomena is closely related to data visualization. However, even with only hundreds of nodes, the visualization of dense networks is usually difficult. The strategy adopted in this work is data reduction using communities. Community detection in social network analysis is a very important issue and in particular detection of community overlapping. In this approach, the information extracted from social networks transcends cohesive groups, enabling the discovery of brokers that interact among communities. To find admissible solutions in hard problems, relaxed approaches are used. Quasi-cliques are generated, and partition is found using a partial set-covering heuristic. The proposed method allows the identification of communities and actors that link two or more groups. In the visualization process, the user can choose different dimension reduction approaches for the condensed graph. For each condensed structure, a hypergraph can be drawn, identifying communities and brokers.

Keywords

Graph mining Data reduction Community detection Brokerage Hypergraphs 

Notes

Acknowledgements

The first author would like to thank the FCT UID/Multi/04046/2013 for its support.

References

  1. Abello J, Resende M, Sudarsky S (2002) Massive quasi-clique detection. In: Rajsbaum S (ed) Proceedings of the Latin-American symposium on theoretical informatics, LNCS, vol 2286. Springer, Heidelberg, pp 598–612Google Scholar
  2. Aggarwal CC, Lin S, Yu PS (2012) On influential node discovery in dynamic social networks. In: Proceedings of the twelfth SIAM international conference on data mining, SDM conference, pp 636–647Google Scholar
  3. Araujo M, Gunnemann S, Mateos G, Faloutsos C (2014) Beyond blocks: hyperbolic community detection. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD), Nancy, FranceGoogle Scholar
  4. Barabási A-L (2016) Network science. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. Batagelj V, Mrvar A (2006) Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed Aug 2018
  6. Berge C (1970) Graphes et hypergraphes. Dunod, PariszbMATHGoogle Scholar
  7. Bilal N, Galinier P, Guibault F (2014) An iterated-tabu-search heuristic for a variant of the partial set covering problem. J Heuristics 20(2):143–164.  https://doi.org/10.1007/s10732-013-9235-9 CrossRefGoogle Scholar
  8. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp.  https://doi.org/10.1088/1742-5468/2008/10/P10008 CrossRefGoogle Scholar
  9. Borgatti S, Everett M, Freeman L (2002) UCINET for Windows: software for social network analysis. Analytic Technologies, Harvard. MAGoogle Scholar
  10. Bourqui R, Mary P, Auber D (2007) How to draw clusteredweighted graphs using a multilevel force-directed graph drawing algorithm. In: 11th international conference information visualization—supplements (IV '07)(IV), Zurich, Switzerland, 2007, pp 757–764.  https://doi.org/10.1109/IV.2007.65
  11. Brunato M, Hoos HH, Battiti R (2008) On effectively finding maximal quasi-cliques in graphs. In: Maniezzo V, Battiti R, Watson JP (eds) Learning and intelligent optimization, LION 2007. Lecture notes in computer science, vol 5313. Springer, BerlinGoogle Scholar
  12. Burt RS (1992) Structural holes: the social structure of competition. Harvard University Press, CambridgeGoogle Scholar
  13. Burt RS (2005) Brokerage and closure: an introduction to social capital. Oxford University Press, New YorkGoogle Scholar
  14. Cavique L, Luz CJ (2009) A heuristic for the stability number of a graph based on convex quadratic programming and tabu search. J Math Sci 161(6):944–955MathSciNetzbMATHCrossRefGoogle Scholar
  15. Cavique L, Rego C, Themido I (2002) A scatter search algorithm for the maximum clique problem. In: Ribeiro C, e Hansen P (eds) Essays and surveys in meta-heuristics. Kluwer Academic Publishers, Dordrecht, pp 227–244CrossRefGoogle Scholar
  16. Cavique L, Mendes AB, Santos JMA (2009) An algorithm to discover the k-clique cover in networks. In: Seabra Lopes L et al (eds) Progress in artificial intelligence. EPIA 2009. LNAI, vol 5816, Springer, Berlin, pp 363–373Google Scholar
  17. Cavique L, Mendes AB, Santos JMA (2012) Clique communities in social networks. In: Moutinho L, Huarng K-H (eds) Quantitative modelling in marketing and management. World Scientific Publisher, Singapore, pp 469–490CrossRefGoogle Scholar
  18. Cavique L, Marques NC, Santos JMA (2014) An algorithm to condensed social networks and identify brokers, advances in artificial intelligence, IBERAMIA. Lecture notes in computer science, vol 8864. Springer, Berlin, pp 331–343. ISBN:978-3-319-12026-3CrossRefGoogle Scholar
  19. Christofides N, Paixão J (1993) Algorithms for large scale set covering problems. Ann Oper Res 43(5):259–277MathSciNetzbMATHCrossRefGoogle Scholar
  20. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4:233–235MathSciNetzbMATHCrossRefGoogle Scholar
  21. Cruz JD, Bothorel C, Poulet F (2014) Community detection and visualization in social networks: integrating structural and semantic information. ACM Trans Intell Syst Technol 5(1):11.  https://doi.org/10.1145/2542182.2542193 CrossRefGoogle Scholar
  22. Derenyi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16):160202CrossRefGoogle Scholar
  23. Didimo W, Montecchiani F (2014) Fast layout computation of clustered networks: algorithmic advances and experimental analysis. Inf Sci 260(1):185–199MathSciNetzbMATHCrossRefGoogle Scholar
  24. DIMACS (1995) Maximum clique, graph coloring, and satisfiability, Second DIMACS implementation challenge. http://dimacs.rutgers.edu/Challenges/. Accessed Aug 2018
  25. Eades P, Feng Q-W (1997) Multilevel visualization of clustered graphs. In: North S (ed) Graph drawing. Lecture notes in computer science, vol 1190. Springer, Berlin, pp 101–112Google Scholar
  26. Eades P, Huang ML (2000) Navigating clustered graphs using force-directed methods. J Graph Algorithms Appl 4(3):157–181zbMATHCrossRefGoogle Scholar
  27. Easley D, Kleinberg J (2010) Networks, crowds and markets: reasoning about a highly connected world. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  28. Erdos P, Renyi A (1959) On random graphs. I. Publicationes Mathematicae 6:290–297MathSciNetzbMATHGoogle Scholar
  29. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345CrossRefGoogle Scholar
  30. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174MathSciNetCrossRefGoogle Scholar
  31. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826MathSciNetzbMATHCrossRefGoogle Scholar
  32. Granovetter M (1973) The strength of weak ties. Am J Sociol 78:1360–1380CrossRefGoogle Scholar
  33. Grossman J, Ion P, Castro RD (2007) The Erdos number project. http://www.oakland.edu/enp/. Accessed Aug 2018
  34. Harary F (1969) Graph theory. Addison-Wesley Publishing Company, BostonzbMATHCrossRefGoogle Scholar
  35. Hespanha JP (2004) An efficient matlab algorithm for graph partitioning. Department of Electrical and Computer Engineering, University of California, Santa BarbaraGoogle Scholar
  36. Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278MathSciNetzbMATHCrossRefGoogle Scholar
  37. Kang U, Faloutsos C (2011) Beyond ‘caveman communities’: hubs and spokes for graph compression and mining. In: Proceedings of the 11th IEEE international conference on data mining (ICDM), Vancouver, Canada, pp 300–309Google Scholar
  38. Karypis G, Kumar V (1999) Multilevel k-way hypergraph partitioning. In: Proceedings of the IEEE 36th conference on design automation conference (DAC), New Orleans, LA, USAGoogle Scholar
  39. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307zbMATHCrossRefGoogle Scholar
  40. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046110CrossRefGoogle Scholar
  41. Li W, Takatsuka M (2004) Adding filtering to geometric distortion to visualize a clustered graph on small screens. In: Proceedings of the Australasian symposium on information visualisation (APVis’04), vol 35. Australian Computer Society, Brisbane, pp 71–79Google Scholar
  42. Liu Y, Safavi T, Shah N, Koutra D (2018) Reducing large graphs to small supergraphs: a unified approach. Soc Netw Anal Min 8(1):17.  https://doi.org/10.1007/s13278-018-0491-4 CrossRefGoogle Scholar
  43. Long JC, Cunningham FC, Braithwaite J (2013) Bridges, brokers and boundary spanners in collaborative networks: a systematic review. BMC Health Serv Res 13:158CrossRefGoogle Scholar
  44. Luce RD (1950) Connectivity and generalized cliques in sociometric group structure. Psychometrika 15:159–190MathSciNetCrossRefGoogle Scholar
  45. Milgram S (1967) The small world problem. Psychol Today 1(1):60–67Google Scholar
  46. Moreno JL (1934) Who shall survive? Nervous and Mental Disease Publishing Company, Washington, DCGoogle Scholar
  47. Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  48. Pei J, Jiang D, Zhang A (2005) On mining cross-graph quasi-cliques. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining (KDD ’05). ACM, New York, NY, USA, pp 228–238.  https://doi.org/10.1145/1081870.1081898
  49. Richards WD (1995) NEGOPY 4.30 manual and users’s guide. School of Communication Simon Fraser University, BurnabyGoogle Scholar
  50. Richards WD, Rice RE (1981) NEGOPY network analysis program. Soc Netw 3:215–223CrossRefGoogle Scholar
  51. Rogers EM, Kincaid DL (1981) Communication networks: toward a new paradigm for research. Free Press, New YorkGoogle Scholar
  52. Scott J (1991) Social network analysis: handbook. SAGE Publications Ltd, Thousand OaksGoogle Scholar
  53. Soriano P, Gendreau M (1996) Tabu search algorithms for the maximum clique. In: Johnson DS, Trick MA (eds) Clique, coloring and satisfiability, second implementation challenge DIMACS. American Mathematical Society, Providence, pp 221–242zbMATHCrossRefGoogle Scholar
  54. Wasserman S, Faust K (1995) Social network analysis: methods and applications. Cambridge University Press, CambridgezbMATHGoogle Scholar
  55. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):409–410zbMATHCrossRefGoogle Scholar
  56. Yang J, Leskovec J (2013) Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceeding of the 6th ACM international conference on web search and data mining (WSDM), ACM, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MAS-BioISI, FCUL and Universidade AbertaLisbonPortugal
  2. 2.CITI and FCT, Universidade Nova LisboaLisbonPortugal
  3. 3.INESC-ID and EST-IP SetúbalSetúbalPortugal

Personalised recommendations