Advertisement

The link stream of contacts in a whole hospital

  • Lucie Martinet
  • Christophe Crespelle
  • Eric Fleury
  • Pierre-Yves Boëlle
  • Didier Guillemot
Original Article
  • 48 Downloads

Abstract

We analyse a huge and very precise trace of contact data collected by a network of sensors during 6 months on the entire population of a rehabilitation hospital. We investigate both the topological structure of the average daily link stream of contacts in the hospital and the temporal structure of the evolution of these contacts hour by hour. Our main aims are to unveil striking properties of these two structures in the considered hospital, and to present a methodology that can be used for analysing any link stream where nodes are classified into groups.

Keywords

Link stream Hospital Close proximity interaction 

Notes

Acknowledgements

The authors thank all the I-Bird (Individual-Based Investigation of Resistance Dissemination) study group members.

Funding

This study was supported by the European Commission under the Life Science Health Priority of the 6th Framework Program (MOSAR network contract LSHP-CT-2007-037941). This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This work was performed within the framework of the LABEX IBEID (ANR-10-LABX-62). The second author gratefully acknowledges the support from a Grant from Région Rhône-Alpes and from the delegation program of CNRS.

References

  1. Bernard H, Fischer R, Mikolajczyk RT, Kretzschmar M, Wildner M (2009) Nurses’ contacts and potential for infectious disease transmission. Emerg Infect Dis 15(9):1438–1444CrossRefGoogle Scholar
  2. Beutels P, Shkedy Z, Aerts M, Van Damme P (2006) Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect 134:1158–1166CrossRefGoogle Scholar
  3. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A (2010) Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5:e11596CrossRefGoogle Scholar
  4. Davis K, Stewart J, Crouch H, Florez C, Hospenthal D (2004) Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 39(6):776–782CrossRefGoogle Scholar
  5. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Person Ubiquitous Comput 10(4):255–268CrossRefGoogle Scholar
  6. Eames K (2008) Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol 73(1):104–111zbMATHCrossRefGoogle Scholar
  7. Edmunds W, Kafatos G, Wallinga J, Mossong J (2006) Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol 3:10CrossRefGoogle Scholar
  8. Génois M, Vestergaard CL, Fournet J, Panisson A, Bonmarin I, Barrat A (2015) Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw Sci 3(3):326–347CrossRefGoogle Scholar
  9. Gundlapalli A, Ma X, Benuzillo J, Pettey W, Greenberg R, Hales J, Leecaster M, Samore M (2009) Social network analyses of patient–healthcare worker interactions: implications for disease transmission. In: AMIA annual symposium proceedings, pp 213–217Google Scholar
  10. Halloran E (2006) Invited commentary: challenges of using contact data to understand acute respiratory disease transmission. Am J Epidemiol 164(10):945–946CrossRefGoogle Scholar
  11. Hornbeck T, Naylor D, Segre A, Thomas G, Herman T, Polgreen P (2012) Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J Infect Dis 206:1549–1557CrossRefGoogle Scholar
  12. Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and human mobility in conference environments. In: ACM SIGCOMM workshop on delay-tolerant networking (WDTN 2005), ACM, pp 244–251Google Scholar
  13. Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE (2011) Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 6(2):e17144CrossRefGoogle Scholar
  14. Latapy M, Viard T, Magnien C (2017) Stream graphs and link streams for the modeling of interactions over time. CoRR abs/1710.04073Google Scholar
  15. Lucet JC, Laouenan C, Chelius G, Veziris N, Lepelletier D, Friggeri A, Abiteboul D, Bouvet E, Mentré F, Fleury E (2012) Electronic sensors for assessing interactions between healthcare workers and patients under airborne precautions. PLoS One 7(5):e37893CrossRefGoogle Scholar
  16. Martinet L, Crespelle C, fleury E (2014) Dynamic contact network analysis in hospital wards. In: 5th workshop on complex networks (CompleNet 2014), Springer, no. 549 in studies in computational intelligence, pp 241–249Google Scholar
  17. Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M (2008) Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect 136(6):813–822CrossRefGoogle Scholar
  18. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Rand Struct Algorithms 6(2–3):161–180MathSciNetzbMATHCrossRefGoogle Scholar
  19. Moody J (2002) The importance of relationship timing for diffusion. Soc Forces 81(1):25–56CrossRefGoogle Scholar
  20. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):e74CrossRefGoogle Scholar
  21. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM (2003) SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 24(5):362–386CrossRefGoogle Scholar
  22. Nijssen S, Bonten M, Weinstein R (2005) Are active microbiological surveillance and subsequent isolation needed to prevent the spread of methicillin-resistant Staphylococcus aureus? Clin Infect Dis 40(3):405–409CrossRefGoogle Scholar
  23. Obadia T, Opatowski L, Temime L, Herrmann JL, Fleury E, Boëlle PY, Guillemot D (2015a) Interindividual contacts and carriage of methicillin-resistant Staphylococcus aureus: a nested case-control study. Infec Control Hosp Epidemiol 36(8):922–929CrossRefGoogle Scholar
  24. Obadia T, Silhol R, Opatowski L, Temime L, Legrand J, Thiébaut A, Herrmann JL, Fleury E, Guillemot D, Boëlle PY (2015b) Detailed contact data and the dissemination of Staphylococcus aureus in hospitals. PLoS Comput Biol 11(3):1–16CrossRefGoogle Scholar
  25. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203CrossRefGoogle Scholar
  26. Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM (2010) Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol 31(9):893–900CrossRefGoogle Scholar
  27. Read JM, Keeling MJ (2003) Disease evolution on networks: the role of contact structure. Proc R Soc B Biol Sci 270(1516):699–708CrossRefGoogle Scholar
  28. Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA (2012) Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect 140(12):2117–2130CrossRefGoogle Scholar
  29. Salathé M, Jones JH (2010) Dynamics and control of diseases in networks with community structure. PLOS Comput Biol 6(4):e1000736MathSciNetCrossRefGoogle Scholar
  30. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH (2010) A high-resolution human contact network for infectious disease transmission. PNAS 107(51):22020–22025CrossRefGoogle Scholar
  31. Smieszek T, Fiebig L, Scholz RW (2009) Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model 6:11CrossRefGoogle Scholar
  32. Stehle J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Regis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P (2011a) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9:87CrossRefGoogle Scholar
  33. Stehle J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, den Broeck WV, Régis C, Lina B, Vanhems P (2011b) High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8):e23176CrossRefGoogle Scholar
  34. Temime L, Opatowski L, Pannet Y, Brun-Buisson C, Boëlle PY, Guillemot D (2009) Peripatetic health-care workers as potential superspreaders. PNAS 106(43):18420–18425CrossRefGoogle Scholar
  35. Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, Ba K, Comte B, Voirin N (2013) Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 8(9):e73970CrossRefGoogle Scholar
  36. Wernitz M, Swidsinski S, Weist K, Sohr D, Witte W, Roloff KFD, Ruden H, Veit S (2005) Effectiveness of a hospital-wide selective screening programme for methicillin-resistant Staphylococcus aureus (MRSA) carriers at hospital admission to prevent hospital-acquired MRSA infections. Clin Microbiol Infect 11(6):457–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Lucie Martinet
    • 1
    • 6
  • Christophe Crespelle
    • 1
    • 2
  • Eric Fleury
    • 1
  • Pierre-Yves Boëlle
    • 3
  • Didier Guillemot
    • 4
    • 5
  1. 1.Univ Lyon, ENS de Lyon, UCB Lyon 1, Inria, CNRS, LIP UMR 5668LyonFrance
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’Épidemiologie et de Santé Publique, UMR S 1136ParisFrance
  4. 4.Institut Pasteur, Unité de Pharmaco-Épidémiologie et Maladies Infectieuses, INSERM, U1181, Univ. Versailles Saint Quentin, UFR des Sciences de la Santé Simone-VeilMontigny-le-BretonneuxFrance
  5. 5.AP-HP, Hôpital Raymond-Poincaré, Unité Fonctionnelle de Santé PubliqueGarchesFrance
  6. 6.Cesi école d’ingénieurÉcullyFrance

Personalised recommendations