Over-time measurement of triadic closure in coauthorship networks

  • Jinseok KimEmail author
  • Jana Diesner
Original Article


Applying the concept of triadic closure to coauthorship networks means that scholars are likely to publish a joint paper if they have previously coauthored with the same people. Prior research has identified moderate to high (20 to 40%) closure rates; suggesting this mechanism is a reasonable explanation for tie formation between future coauthors. We show how calculating triadic closure based on prior operationalizations of closure, namely Newman’s measure for one-mode networks (NCC) and Opsahl’s measure for two-mode networks (OCC) may lead to higher amounts of closure compared to measuring closure over time via a metric that we introduce and test in this paper. Based on empirical experiments using four large-scale, longitudinal datasets, we find a lower bound of 1–3% closure rates and an upper bound of 4–7%. These results motivate research on new explanatory factors for the formation of coauthorship links.


Clustering coefficient Transitivity Triadic closure Coauthorship networks 



This work was supported by Korea Institute of Science and Technology Information (KISTI). We would like to thank Mark E. J. Newman and Tore Opsahl for providing codes.


  1. Barabási AL, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A Stat Mech Appl 311(3–4):590–614. doi: 10.1016/s0378-4371(02)00736-7 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Burt RS (2005) Brokerage and closure: an introduction to social capital. Oxford University Press, OxfordGoogle Scholar
  3. Çavuşoğlu A, Türker İ (2013) Scientific collaboration network of Turkey. Chaos, Solitons Fractals 57:9–18CrossRefGoogle Scholar
  4. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695.
  5. Fegley BD, Torvik VI (2013) Has large-scale named-entity network analysis been resting on a flawed assumption? PLoS ONE 8(7):1–16. doi: 10.1371/journal.pone.0070299 CrossRefGoogle Scholar
  6. Franceschet M (2011) Collaboration in computer science: a network science approach. J Am Soc Inf Sci Technol 62(10):1992–2012. doi: 10.1002/asi.21614 CrossRefGoogle Scholar
  7. Grossman JW (2002) Patterns of collaboration in mathematical research. SIAM News 35(9):8–9Google Scholar
  8. Hâncean M-G, Perc M (2016) Homophily in coauthorship networks of East European sociologists. Sci Rep. doi: 10.1038/srep36152 Google Scholar
  9. Hâncean M-G, Perc M, Vlăsceanu L (2014) Fragmented romanian sociology: growth and structure of the collaboration network. PLoS ONE 9(11):e113271CrossRefGoogle Scholar
  10. Holland PW, Leinhardt S (1970) Method for detecting structure in sociometric data. Am J Sociol 76(3):492. doi: 10.1086/224954 CrossRefGoogle Scholar
  11. Kim J, Diesner J (2015) The effect of data pre-processing on understanding the evolution of collaboration networks. J Informetr 9(1):226–236. doi: 10.1016/j.joi.2015.01.002 CrossRefGoogle Scholar
  12. Kim J, Diesner J (2016) Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks. J Assoc Inf Sci Technol 67(6):1446–1461. doi: 10.1002/asi.23489 CrossRefGoogle Scholar
  13. Kim J, Tao L, Lee S-H, Diesner J (2016) Evolution and structure of scientific co-publishing network in Korea between 1948–2011. Scientometrics 107(1):27–41. doi: 10.1007/s11192-016-1878-5 CrossRefGoogle Scholar
  14. Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90. doi: 10.1126/science.1116869 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58(7):1019–1031. doi: 10.1002/asi.20591 CrossRefGoogle Scholar
  16. Lind PG, Gonzalez MC, Herrmann HJ (2005) Cycles and clustering in bipartite networks. Phys Rev E 72(5):056127. doi: 10.1103/PhysRevE.72.056127 CrossRefGoogle Scholar
  17. Martin T, Ball B, Karrer B, Newman MEJ (2013) Coauthorship and citation patterns in the Physical Review. Phys Rev E 88(1):012814-1–012814-9. doi: 10.1103/PhysRevE.88.012814 CrossRefGoogle Scholar
  18. McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Ann Rev Sociol 27:415–444. doi: 10.1146/annurev.soc.27.1.415 CrossRefGoogle Scholar
  19. Moody J (2004) The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am Sociol Rev 69(2):213–238CrossRefGoogle Scholar
  20. Newman MEJ (2001a) Clustering and preferential attachment in growing networks. Phys Rev E. doi: 10.1103/PhysRevE.64.025102 Google Scholar
  21. Newman MEJ (2001b) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98(2):404–409. doi: 10.1073/pnas.021544898 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118CrossRefGoogle Scholar
  23. Opsahl T (2009) Structure and evolution of weighted networks. University of London (Queen Mary College), LondonGoogle Scholar
  24. Opsahl T (2013) Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc Netw 35(2):159–167CrossRefGoogle Scholar
  25. Perc M (2010) Growth and structure of Slovenia’s scientific collaboration network. J Informetr 4(4):475–482CrossRefGoogle Scholar
  26. Rapoport A (1953) Spread of information through a population with socio-structural bias: I. Assumption of transitivity. Bull Math Biophys 15(4):523–533MathSciNetCrossRefGoogle Scholar
  27. Reitz F, Hoffmann O (2011) Did they notice? A case-study on the community contribution to data quality in DBLP. In: Gradmann S, Borri F, Meghini C, Schuldt H (eds) Research and advanced technology for digital libraries, TPDL 2011, vol 6966. Springer, Berlin, pp 204–215CrossRefGoogle Scholar
  28. Robins G, Alexander M (2004) Small worlds among interlocking directors: network structure and distance in bipartite graphs. Comput Math Organ Theory 10(1):69–94. doi: 10.1023/B:CMOT.0000032580.12184.c0 CrossRefzbMATHGoogle Scholar
  29. Torvik VI, Smalheiser NR (2009) Author name disambiguation in MEDLINE. ACM Trans Knowl Discov Data 3(3):1–29. doi: 10.1145/1552303.1552304 CrossRefGoogle Scholar
  30. Türker İ, Çavuşoğlu A (2016) Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective. Chaos, Solitons Fractals 91:386–392CrossRefGoogle Scholar
  31. Türker İ, Durgut R, Çavuşoğlu A (2016) Co-authorship network comparison of four Turkish universities. In: Paper presented at the international conference on research in education & science, Bodrum, TurkeyGoogle Scholar
  32. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar
  33. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440–442CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.School of Information SciencesUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations