A new approach to role and position detection in networks

  • Davide Vega
  • Matteo Magnani
  • Danilo Montesi
  • Roc Meseguer
  • Felix Freitag
Original Article


We rethink and extend the concepts of position and role in a network, basing them on various well-known measures that were not previously associated with these concepts, such as geodesic distance and modularity. The effectiveness of our new role and position detection algorithms is evaluated both qualitatively and quantitatively, on synthetic and real data, showing that we can identify new types of meaningful patterns in networks.


Blockmodeling Positions vs. roles Communities Betweenness Shortest paths Approximation 


  1. Borgatti SP (1992) Notions of position in social network analysis. Sociol Methodol 22(1):1–35. doi:10.2307/270991 CrossRefGoogle Scholar
  2. Borgatti SP, Everett MG (1993) Two algorithms for computing regular equivalence. Soc Netw 15(4):361–376. doi:10.1016/0378-8733(93)90012-A MathSciNetCrossRefGoogle Scholar
  3. Breiger RL, Pattison PE (1986) Cumulated social roles: the duality of persons and their algebras. Soc Netw 8(3):215–256. doi:10.1016/0378-8733(86)90006-7 CrossRefGoogle Scholar
  4. Brusco M, Doreian P, Steinley D, Satornino C (2013) Multiobjective blockmodeling for social network analysis. Psychometrika 78(3):498–525. doi:10.1007/s11336-012-9313-1 MathSciNetCrossRefMATHGoogle Scholar
  5. Coscia M, Giannotti F, Pedreschi D (2011) A classification for community discovery methods in complex networks. Stat Anal Data Mining 4(5):512–546. doi:10.1002/sam.10133 MathSciNetCrossRefGoogle Scholar
  6. Doreian P (1988) Equivalence in a social network. J Math Sociol 13(3):243–281. doi:10.1080/0022250X.1988.9990034 MathSciNetCrossRefMATHGoogle Scholar
  7. Doreian P, Batagelj V, Ferligoj A (2004) Generalized blockmodeling of two-mode network data. Soc Netw 26(1):29–53. doi:10.1016/j.socnet.2004.01.002 CrossRefGoogle Scholar
  8. Doreian P, Batagelj V, Ferligoj A (2005) Generalized blockmodeling. Structural analysis in the social sciences. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. Durbin J (1973) Distribution theory for tests based on the sample distribution function. Soc Ind Appl Math. doi:10.1137/1.9781611970586
  10. Erdős P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290–297. doi:10.1234/12345678 MathSciNetMATHGoogle Scholar
  11. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/j.physrep.2009.11.002 MathSciNetCrossRefGoogle Scholar
  12. Gilpin S, Eliassi-Rad T, Davidson I (2013) Guided learning for role discovery (GLRD): framework, algorithms, and applications. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, pp 113–121. doi:10.1145/2487575.2487620
  13. Henderson K, Gallagher B, Eliassi-Rad T, Tong H, Basu S, Akoglu L, Koutra D, Faloutsos C, Li L (2012) RolX: structural role extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, KDD '12, pp 1231–1239.doi:10.1145/2339530.2339723
  14. Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, KDD ’02, pp 538–543. doi:10.1145/775047.775126
  15. Jin R, Lee VE, Hong H (2011) Axiomatic ranking of network role similarity. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, KDD ’11, pp 922–930. doi:10.1145/2020408.2020561
  16. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys Rep 80:016,118. doi:10.1103/PhysRevE.80.016118 Google Scholar
  17. Müllner D (2013) fastcluster: fast hierarchical, agglomerative clustering routines for r and python. J Stat Softw 53(1):1–18. doi:10.18637/jss.v053.i09 Google Scholar
  18. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31(3):274–295. doi:10.1007/s00357-014-9161-z MathSciNetCrossRefMATHGoogle Scholar
  19. Rossi L, Magnani M (2015) Towards effective visual analytics on multiplex and multilayer networks. Chaos Solitons Fractals 72:68–76. doi:10.1016/j.chaos.2014.12.022 MathSciNetCrossRefGoogle Scholar
  20. Rossi R, Ahmed N (2015) Role discovery in networks. IEEE Trans Knowl Data Eng 27(4):1112–1131. doi:10.1109/TKDE.2014.2349913 CrossRefGoogle Scholar
  21. Vega D, Magnani M, Meseguer R, Freitag F (2015) Role and position detection in networks: reloaded. In: International conference on advances in social networks analysis and mining (ASONAM)Google Scholar
  22. Wasserman S (1994) Social network analysis: methods and applications, vol 8. cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. White DR, Reitz KP (1983) Graph and semigroup homomorphisms on networks of relations. Soc Netw 5(2):193–234. doi:10.1016/0378-8733(83)90025-4 MathSciNetCrossRefGoogle Scholar
  24. Zhang J, Tang J, Ma C, Tong H, Jing Y, Li J (2015) Panther: fast top-k similarity search on large networks. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, KDD ’15, pp 1445–1454. doi:10.1145/2783258.2783267
  25. Žiberna A (2007) Generalized blockmodeling of valued networks. Soc Netw 29(1):105–126. doi:10.1016/j.socnet.2006.04.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.University of BolognaBolognaItaly
  2. 2.Uppsala UniversityUppsalaSweden
  3. 3.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations