Different flavors of randomness: comparing random graph models with fixed degree sequences

  • Wolfgang E. Schlauch
  • Emőke Ágnes Horvát
  • Katharina A. Zweig
Original Article

Abstract

When a structural characteristic of a network is measured, the observed value needs to be compared to its expected value in a random graph model to assess the statistical significance of its occurrence. The random graph model with which the observed graph is compared is chosen to be structurally similar to the real-world network in some aspects and totally random in all others. To make the analysis of the expected value amenable, the random graph model is also chosen to be as simple as possible. The most common random graph models maintain the degree sequence of the observed graph or at least approximate it. In cases where multi-edges and self-loops are not allowed, typically the fixed degree sequence model (FDSM) is used. Since it is computationally expensive, in this article, we discuss whether one of the following three approximative models can replace it: the configuration model, its simplified version (eCFG), and the mathematical approximation we term simple independence model. While the latter models are more scalable than the FDSM, we show that there are several networks for which they cannot be meaningfully applied. We investigate based on some examples whether, and if so in which cases, these approximating models can replace the computationally more involved FDSM.

Keywords

Complex networks Average neighbor degree Random graph models Co-occurrence 

References

  1. Aghbolagh RD, Zeilemaker N, Pouwelse J, Epema D (2013) A network science perspective of a distributed reputation mechanism. In: IFIP Networking 2013Google Scholar
  2. Alon U (2006) An introduction to systems biology—design principles of biological circuits. Chapman & Hall/CRC, Boca RatonMATHGoogle Scholar
  3. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetCrossRefGoogle Scholar
  4. Boguá M, Pastor-Satorras R, Vespignani A (2003) Epidemic spreading in complex networks with degree correlations. In: Pastor-Satorras R, Rubi M, Diaz-Guilera A (eds) Statistical mechanics of complex networks. Lecture notes in physics, vol 625. Springer, Berlin, pp 127–147. doi:10.1007/978-3-540-44943-0_8
  5. Bollobás B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24(1):5–34MATHMathSciNetCrossRefGoogle Scholar
  6. Brualdi RA (2006) Algorithms for constructing (0,1)-matrices with prescribed row and column sum vectors. Discret Math 306:3054–3062MATHMathSciNetCrossRefGoogle Scholar
  7. Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl Acad Sci 99(25):15879–15882. doi:10.1073/pnas.252631999 MATHMathSciNetCrossRefGoogle Scholar
  8. Cobb GW, Chen YP (2003) An application of Markov Chain Monte Carlo to community ecology. Am Math Mon 110:265–288MATHMathSciNetCrossRefGoogle Scholar
  9. de Arruda GF, Barbieri AL, Rodríguez PM, Rodrigues FA, Moreno Y, da Fontoura Costa L (2014) Role of centrality for the identification of influential spreaders in complex networks. Phys Rev E 90(032):812. doi:10.1103/PhysRevE.90.032812 Google Scholar
  10. Erdős P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6:290–297MathSciNetGoogle Scholar
  11. Freeman LC (1977) A set of measures of centrality based upon betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  12. Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):9CrossRefGoogle Scholar
  13. Gionis A, Mannila H, Mielikäinen T, Tsaparas P (2007) Assessing data mining results via swap randomization. ACM Trans Knowl Discov Data 1(3):14CrossRefGoogle Scholar
  14. Goh KII, Cusick ME, Valle D, Childs B, Vidal M, Barabási ALL (2007) The human disease network. Proc Natl Acad Sci USA 104(21):8685–8690. doi:10.1073/pnas.0701361104 CrossRefGoogle Scholar
  15. Gotelli NJ, Graves GR (1996) Null-models in ecology. Smithsonian Institution Press, WashingtonGoogle Scholar
  16. Katz L, Powell JH (1955) Measurement of the tendency toward reciprocation of choice. Sociometry 18(4):403–409CrossRefGoogle Scholar
  17. Ledermann W (ed) (1980) Handbook of applicable mathematics. Wiley, ChichesterGoogle Scholar
  18. Leicht EA, Holme P, Newman ME (2006) Vertex similarity in networks. Phys Rev E 73(2):026120CrossRefGoogle Scholar
  19. Malumbres M (2012) miRNAs versus oncogenes: the power of social networking. Mol Syst Biol 8:569CrossRefGoogle Scholar
  20. Mcauley J, J Leskovec (2014) Discovering social circles in ego networks. ACM Trans Knowl Discov Data 8(1):4:1–4:28. doi:10.1145/2556612 CrossRefGoogle Scholar
  21. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004a) Superfamilies of evolved and designed networks. Science 303:1538–1542CrossRefGoogle Scholar
  22. Milo R, Kashtan N, Itzkovitz S, Newman MEJ, Alon U (2004b) Subgraphs in networks. Phys Rev E 70(058):102MathSciNetGoogle Scholar
  23. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. doi:10.1126/science.298.5594.824. http://www.sciencemag.org/content/298/5594/824.full.pdf
  24. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2–3):161–180. doi:10.1002/rsa.3240060204 MATHMathSciNetCrossRefGoogle Scholar
  25. Newman ME, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci USA 99:2566–2572MATHCrossRefGoogle Scholar
  26. Newman ME (2003) Mixing patterns in networks. Phys Rev E 67(2):026126. doi:10.1103/physreve.67.026126 MathSciNetCrossRefGoogle Scholar
  27. Newman MEJ (2010) Networks: an introduction. Oxford University Press, New YorkCrossRefGoogle Scholar
  28. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRefGoogle Scholar
  29. Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2):155–163. doi:10.1016/j.socnet.2009.02.002 CrossRefGoogle Scholar
  30. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:10.1038/ng881 CrossRefGoogle Scholar
  31. Traud AL, Kelsic ED, Mucha PJ, Porter MA (2011) Comparing community structure to characteristics in online collegiate social networks. SIAM Rev 53(3):526–543. doi:10.1137/080734315 MathSciNetCrossRefGoogle Scholar
  32. Uhlmann S, Mannsperger H, Zhang JD, Horvat EÁ, Schmidt C, Küblbeck M, Ward A, Tschulena U, Zweig K, Korf U, Wiemann S, Sahin Ö (2012) Global miRNA regulation of a local protein network: case study with the EGFR-driven cell cycle network in breast cancer. Mol Syst Biol 8:570CrossRefGoogle Scholar
  33. van der Hofstad R (2012) Random graphs and complex networks. Department of Mathematics and Computer ScienceGoogle Scholar
  34. van der Hofstad R, Hooghiemstra G (2008) Universality for distances in power-law random graphs. J Math Phys 49(12):125209. doi:10.1063/1.2982927 MathSciNetCrossRefGoogle Scholar
  35. Wasserman S, Faust K (1994) Social network analysis., Methods and applicationsCambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  37. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proceedings of the National Academy of Sciences 101(101):5934–5939CrossRefGoogle Scholar
  38. Zweig KA (2010) How to forget the second side of the story: a new method for the one-mode projection of bipartite graphs. In: Proceedings of the 2010 international conference on advances in social networks analysis and mining (ASONAM 2010), pp 200–207Google Scholar
  39. Zweig KA (2014) Network representations of complex data. In: Encyclopedia of social network analysis and mining. Springer, HeidelbergGoogle Scholar
  40. Zweig KA, Kaufmann M (2011) A systematic approach to the one-mode projection of bipartite graphs. Soc Netw Anal Min 1(3):187–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Wolfgang E. Schlauch
    • 1
  • Emőke Ágnes Horvát
    • 2
  • Katharina A. Zweig
    • 1
  1. 1.Technische Universität KaiserslauternKaiserslauternGermany
  2. 2.Northwestern Institute on Complex SystemsNorthwestern UniversityEvanstonUSA

Personalised recommendations