Social Network Analysis and Mining

, Volume 3, Issue 4, pp 1209–1224 | Cite as

A fixed degree sequence model for the one-mode projection of multiplex bipartite graphs

Original Article

Abstract

A bipartite structure is a common property of many real-world network data sets such as agents which are affiliated with societies, customers who buy, rent, or rate products, and authors who write scientific papers. The one-mode projection of these networks onto either set of entities (e.g., societies, products, and articles) is a well-established approach for the analysis of such data and deduces relations between these entities. Some bipartite data sets of key importance contain several distinct types of relations between their entities. These networks require a projection method which accounts for multiple edge types. In this article, we present the multiplex extension of an existing projection algorithm for simplex bipartite networks, i.e., networks that contain a single type of relation. We use synthetic data to show the robustness of our method before applying it to a real-world network of user ratings for films, namely, the Netflix data set. Based on the assumption that co-ratings of films contain information about the films’ similarity, we analyse the multiplex projection as an approximation of the similarity landscape of the films. Besides comparing the projection to the coarse-grained classification of films into genres, we validate the resulting similarities based on ground truth data sets containing film series. Our analysis confirms the predictive power of the network of positive co-ratings. We furthermore explore the potential of additional, mixed co-rating patterns in improving the prediction of similarities and highlight necessary criteria for this approach.

Keywords

Bipartite graphs One-mode projection Multiplex networks 

References

  1. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466:761–764CrossRefGoogle Scholar
  2. Barabási AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A 311:590–614MathSciNetCrossRefMATHGoogle Scholar
  3. boyd d, Crawford K (2011) Six provocations for big data. In: A Decade in Internet Time: Symposium on the Dynamics of the Internet and SocietyGoogle Scholar
  4. Breiger RL (1974) The duality of persons and groups. Soc Forces 53(2):181–190Google Scholar
  5. Bródka, Stawiak P, Kazienko P (2011) Shortest path discovery in the multi-layered social network. In: Proceedings of the 2011 Interntional Conference on Advances in Social Networks Analysis and Mining (ASONAM ’11), pp 497–501Google Scholar
  6. Campbell C, Yang S, Albert R, Sheab K (2011) A network model for plant–pollinator community assembly. Proc Natl Acad Sci 108:197–202CrossRefGoogle Scholar
  7. Davis D, Lichtenwalter R, Chawla NV (2012) Supervised methods for multi-relational link prediction. Soc Netw Anal Min, pp 1–15Google Scholar
  8. Eagle N, Pentland AS, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci 106:15274–15278CrossRefGoogle Scholar
  9. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874CrossRefGoogle Scholar
  10. Foster JG, Foster DV, Grassberger P, Paczuski M (2010) Edge direction and the structure of networks. Proc Natl Acad Sci 107(24):10815–10820CrossRefGoogle Scholar
  11. Gionis A, Mannila H, Mielikinen T, Tsaparas P (2007) Assessing data mining results via swap randomization. ACM Trans Knowl Discov Data 1(3). Art no 14Google Scholar
  12. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99:7821–7826MathSciNetCrossRefMATHGoogle Scholar
  13. Gómez-Gardeñes J, Vilone D, Sanchez A (2011) Disentangling social and group heterogeneities: Public Goods games on complex networks. Eur J Phys 95:68003Google Scholar
  14. Gotelli NJ, Graves GR (1996) Null-Models in Ecology. Smithsonian Institution Press, Washington, DCGoogle Scholar
  15. Holme P, Liljeros F, Edling CR, Kim BJ (2003) Network bipartivity. Phys Rev E 68:056107CrossRefGoogle Scholar
  16. Horvát EÁ, Zweig KA (2012) One-mode projection of bipartite graphs. In: Proceedings of the 2012 Interntional Conference on Advances in Social Networks Analysis and Mining (ASONAM ’12), pp 598–605Google Scholar
  17. Kazienko P, Musial K, Kajdanowicz T (2011) Multidimensional social network in the social recommender system. IEEE Trans Syst Man Cybern Part A Syst Hum 41(4):746–759CrossRefGoogle Scholar
  18. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78:046110CrossRefGoogle Scholar
  19. Lehmann S, Schwartz M, Hansen LK (2008) Biclique communities. Phys Rev E 78:016108MathSciNetCrossRefGoogle Scholar
  20. Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christachis N (2008) Tastes, ties, and time: a new social network dataset using facebook.com. Soc Netw 30:330–342CrossRefGoogle Scholar
  21. Li M, Fan Y, Chen J, Gao L, Di Z, Wu J (2005) Weighted networks of scientific communication: the measurement and topological role of weight. Physica A 350:643–656CrossRefGoogle Scholar
  22. Li N, Chen G (2009) Multi-layered friendship modeling for location-based mobile social networks. In: Proceedings of Mobiquitous 2009 (MobiQuitous ’09), pp 1–10Google Scholar
  23. Magnani M, Rossi L (2011) The ML-model for multi-layer social networks. In: Proceedings of the 2011 Interntional Conference on Advances in Social Networks Analysis and Mining (ASONAM ’11), pp 5–12Google Scholar
  24. Mane KK, Börner K (2004) Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci 101:5287–5290CrossRefGoogle Scholar
  25. McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444CrossRefGoogle Scholar
  26. Milo R, Shen-Orr SS, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2004) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefGoogle Scholar
  27. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878MathSciNetCrossRefMATHGoogle Scholar
  28. Neal Z (2013) Identifying statistically significant edges in one-mode projections. Soc Netw Anal Min, pp 1–10Google Scholar
  29. Newman MEJ (2001a) Scientific collaboration networks. I. Network construction and fundamental results. Phys Rev Lett 64:016131Google Scholar
  30. Newman MEJ (2001b) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev Lett 64:016132Google Scholar
  31. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701CrossRefGoogle Scholar
  32. Newman MEJ (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205CrossRefGoogle Scholar
  33. Park J, Barabási AL (2007) Distribution of node characteristics in complex networks. Proc Natl Acad Sci 104(46):17916–17920CrossRefGoogle Scholar
  34. Piatetsky-Shapiro G, Frawley W (1991) Knowledge Discovery in Databases. AAAI/MIT Press, Cambridge, pp 229–248Google Scholar
  35. Ramasco JJ, Dorogovtsev S, Pastor-Satorras R (2004) Self-organization of collaboration networks. Phys Rev E 70:036106CrossRefGoogle Scholar
  36. Ramasco JJ, Morris SA (2006) Social inertia in collaboration networks. Phys Rev E 73:016122CrossRefGoogle Scholar
  37. Saavedra S, Reed-Tsochas F, Uzzi B (2009) A simple model of bipartite cooperation for ecological and organizational networks. Nature 457:463–466CrossRefGoogle Scholar
  38. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68CrossRefGoogle Scholar
  39. Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci 107:13636–13641CrossRefGoogle Scholar
  40. Szell M, Thurner S (2010) Measuring social dynamics in a massive multiplayer online game. Soc Netw 32:313–329CrossRefGoogle Scholar
  41. The Internet Movie Database (IMDb). Alternative interfaces. http://imdb.com/interfaces
  42. The Netflix Prize. http://www.netflixprize.com/
  43. Uhlmann S, Mannsperger H, Zhang JD, Horvát EÁ, Schmidt C, Küblbeck M, Ward A, Tschulena U, Zweig K, Korf U, Wiemann S, Sahin Ö (2012) Global miRNA regulation of a local protein network: case study with the EGFR-driven cell cycle network in breast cancer. Mol Syst Biol 570:8Google Scholar
  44. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  45. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  46. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription–regulation and protein–protein interaction. Proc Natl Acad Sci 101:5934–5939CrossRefGoogle Scholar
  47. Zahoránszky L, Katona G, Hári P, Málnási-Csizmadia A, Zweig K, Zahoránszky-Kőhalmi G (2009) Breaking the hierarchy—a new cluster selection mechanism for hierarchical clustering methods. Algorithms Mol Biol 4:12CrossRefGoogle Scholar
  48. Zhou T, Ren J, Medo M, Zhang YC (2007) Bipartite network projection and personal recommendation. Phys Rev E 76:046115CrossRefGoogle Scholar
  49. Zweig KA (2010) How to forget the second side of the story: a new method for the one-mode projection of bipartite graphs. In: Proceedings of the second Interntional Conference on Advances in Social Networks Analysis and Mining (ASONAM’10), pp 200–207Google Scholar
  50. Zweig KA, Kaufmann M (2011) A systematic approach to the one-mode projection of bipartite graphs. Soc Netw Anal Min 1(3):187–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  2. 2.Technical University of KaiserslauternKaiserslauternGermany
  3. 3.Technical University of KaiserslauternKaiserslauternGermany

Personalised recommendations