Social Network Analysis and Mining

, Volume 3, Issue 2, pp 233–256 | Cite as

On tractable cases of Target Set Selection

  • André NichterleinEmail author
  • Rolf Niedermeier
  • Johannes Uhlmann
  • Mathias Weller
Original Article


We study the NP-hard Target Set Selection (TSS) problem occurring in social network analysis. Roughly speaking, given a graph where each vertex is associated with a threshold, in TSS the task is to select a minimum-size “target set” such that all vertices of the graph get activated. Activation is a dynamic process. First, only the vertices in the target set are active. Then, a vertex becomes active if the number of its active neighbors exceeds its threshold, and so on. TSS models the spread of information, infections, and influence in networks. Complementing results on its polynomial-time approximability and extending results for its restriction to trees and bounded treewidth graphs, we classify the influence of the parameters “diameter”, “cluster editing number”, “vertex cover number”, and “feedback edge set number” of the underlying graph on the problem’s computational complexity, revealing both tractable and intractable cases. For instance, even for diameter-two split graphs TSS remains W[2]-hard with respect to the parameter “size of the target set”. TSS can be efficiently solved on graphs with small feedback edge set number and also turns out to be fixed-parameter tractable when parameterized by the vertex cover number. Both results contrast known parameterized intractability results for the parameter “treewidth”. While these tractability results are relevant for sparse networks, we also show efficient fixed-parameter algorithms for the parameter “cluster editing number”, yielding tractability for certain dense networks.


Dynamic monopolies Influence spreading Spread of information Viral marketing Algorithms and complexity Parameterized computational complexity Fixed-parameter tractability Data reduction 


  1. Abrahamson KA, Downey RG, Fellows MR (1995) Fixed-parameter tractability and completeness IV: on completeness for W[P] and PSPACE analogues. Ann Pure Appl Logic 73(3):235–276MathSciNetzbMATHCrossRefGoogle Scholar
  2. Ackerman E, Ben-Zwi O, Wolfovitz G (2010) Combinatorial model and bounds for target set selection. Theor Comput Sci 411(44–46):4017–4022MathSciNetzbMATHCrossRefGoogle Scholar
  3. Agarwal N, Liu H, Tang L, Yu P (2011) Modeling blogger influence in a community. Soc Netw Anal Min (to appear)Google Scholar
  4. Bazgan C, Chopin M, Fellows MR (2011) Parameterized complexity of the firefighter problem. In: Proceedings of 22nd ISAAC, LNCS, vol 7074. Springer, Berlin, pp 643–652Google Scholar
  5. Ben-Zwi O, Hermelin D, Lokshtanov D, Newman I (2011) Treewidth governs the complexity of target set selection. Discrete Optim 8(1):87–96MathSciNetzbMATHCrossRefGoogle Scholar
  6. Böcker S (2011) A golden ratio parameterized algorithm for cluster editing. In: Proceedings of 22nd IWOCA, LNCS, vol 7056. Springer, Berlin, pp 85–95Google Scholar
  7. Böcker S, Damaschke P (2011) Even faster parameterized cluster deletion and cluster editing. Inf Process Lett 111(14):717–721zbMATHCrossRefGoogle Scholar
  8. Bodlaender HL (2009) Kernelization: New upper and lower bound techniques. In: Proceedings of 4th IWPEC, LNCS, vol 5917. Springer, Berlin, pp 17–37Google Scholar
  9. Bodlaender HL, Jansen BMP, Kratsch S (2011a) Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Proceedings of 38th ICALP, LNCS, vol 6755. Springer, Berlin, pp 437–448Google Scholar
  10. Bodlaender HL, Thomassé S, Yeo A (2011b) Kernel bounds for disjoint cycles and disjoint paths. Theor Comput Sci 412(35):4570–4578zbMATHCrossRefGoogle Scholar
  11. Brandstädt A, Le VB, Spinrad JP (1999) Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications, vol 3. SIAM, AucklandGoogle Scholar
  12. Chen J, Kanj IA, Xia G (2010) Improved upper bounds for vertex cover. Theor Comput Sci 411(40–42):3736–3756MathSciNetzbMATHCrossRefGoogle Scholar
  13. Chen N (2009) On the approximability of influence in social networks. SIAM J Discrete Math 23(3):1400–1415MathSciNetzbMATHCrossRefGoogle Scholar
  14. Cygan M, Fomin F, Leeuwen EJV (2012) Parameterized complexity of firefighting revisited. In: Proceedings of 6th IPEC, LNCS, vol 7112. Springer, Berlin, pp 13–26Google Scholar
  15. Davidson SB, Garcia-Molina H, Skeen D (1985) Consistency in partitioned networks. ACM Comput Surv 17(3):341–370CrossRefGoogle Scholar
  16. De Nooy W, Mrvar A, Batagelj V (2011) Exploratory social network analysis with Pajek. No. 34 in structural analysis in the social sciences. Cambridge University Press, CambridgeGoogle Scholar
  17. Dom M, Lokshtanov D, Saurabh S (2009) Incompressibility through colors and IDs. In: Proceedings of 36th ICALP, LNCS, vol 5555. Springer, Berlin, pp 378–389Google Scholar
  18. Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of 7th ACM KDD. ACM Press, New York, pp 57–66Google Scholar
  19. Downey R, Fellows M, McCartin C, Rosamond F (2008) Parameterized approximation of dominating set problems. Inf Process Lett 109(1):68–70MathSciNetCrossRefGoogle Scholar
  20. Downey RG, Fellows MR (1999) Parameterized complexity. Springer, BerlinGoogle Scholar
  21. Dreyer PA Jr, Roberts FS (2009) Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl Math 157:1615–1627MathSciNetzbMATHCrossRefGoogle Scholar
  22. Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeGoogle Scholar
  23. Fellows M (2009) Towards fully multivariate algorithmics: some new results and directions in parameter ecology. In: Proceedings of 20th IWOCA, LNCS, vol 5874. Springer, Berlin, pp 2–10Google Scholar
  24. Fellows MR, Lokshtanov D, Misra N, Rosamond FA, Saurabh S (2008) Graph layout problems parameterized by vertex cover. In: Proceedings of 19th ISAAC, LNCS, vol 5369. Springer, Berlin, pp 294–305Google Scholar
  25. Fiala J, Golovach PA, Kratochvíl J (2011) Parameterized complexity of coloring problems: treewidth versus vertex cover. Theor Comput Sci 412(23):2513–2523zbMATHCrossRefGoogle Scholar
  26. Flum J, Grohe M (2006) Parameterized complexity theory. Springer, BerlinGoogle Scholar
  27. Franks DW, Noble J, Kaufmann P, Stagl S (2008) Extremism propagation in social networks with hubs. Adapt Behav 16(4):264–274CrossRefGoogle Scholar
  28. Garcia-Molina H, Barbará D (1985) How to assign votes in a distributed system. J ACM 32(4):841–860zbMATHCrossRefGoogle Scholar
  29. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, GordonsvilleGoogle Scholar
  30. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826MathSciNetzbMATHCrossRefGoogle Scholar
  31. Guo J, Niedermeier R (2007) Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1):31–45CrossRefGoogle Scholar
  32. Harant J, Pruchnewski A, Voigt M (1999) On dominating sets and independent sets of graphs. Comb Probab Comput 8(6):547–553MathSciNetzbMATHCrossRefGoogle Scholar
  33. Jiang H, Zhang C, Zhu B (2010) Weak kernels. Tech. Rep. TR10-005, Department of Computer Science, Montana State UniversityGoogle Scholar
  34. Johnson DS (1984) The genealogy of theoretical computer science: a preliminary report. SIGACT News 16(2):36–49, reprinted in Bulletin of the EATCS, No. 25, pp 198–211, 1985Google Scholar
  35. Jurvetson S (2000) What exactly is viral marketing? Red Herring 78:110–112Google Scholar
  36. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of 9th ACM KDD. ACM Press, New York, pp 137–146Google Scholar
  37. Kutten S, Peleg D (1999) Fault-local distributed mending. J Algorithms 30(1):144–165MathSciNetzbMATHCrossRefGoogle Scholar
  38. Leskovec J, Horvitz E (2008) Planetary-scale views on a large instant-messaging network. In: Proceedings of 17th WWW. ACM Press, New York, pp 915–924Google Scholar
  39. Leskovec J, Adamic LA, Huberman BA (2007a) The dynamics of viral marketing. ACM Trans Web 1(1)Google Scholar
  40. Leskovec J, McGlohon M, Faloutsos C, Glance NS, Hurst M (2007b) Patterns of cascading behavior in large blog graphs. In: Proceedings of 7th SDM. SIAM, Auckland, pp 551–556Google Scholar
  41. MacGillivray G, Wang P (2003) On the firefighter problem. J Comb Math Comb Comput 47:83–96MathSciNetzbMATHGoogle Scholar
  42. McConnell RM, Spinrad J (1994) Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proceedings of 5th SODA. ACM/SIAM, New York, pp 536–545Google Scholar
  43. Milgram S (1967) The small world problem. Psychol Today 1:61–67Google Scholar
  44. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetzbMATHCrossRefGoogle Scholar
  45. Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordGoogle Scholar
  46. Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68(3):036122CrossRefGoogle Scholar
  47. Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, OxfordGoogle Scholar
  48. Niedermeier R (2010) Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of 27th STACS, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, LIPIcs, vol 5, pp 17–32Google Scholar
  49. Norlen K, Lucas G, Gebbie M, Chuang J (2002) Eva: extraction, visualization and analysis of the telecommunications and media ownership network. In: Proceedings of 14th ITSGoogle Scholar
  50. Pelc A (1996) Efficient fault location with small risk. In: SIROCCO, Carleton Scientific, pp 292–300Google Scholar
  51. Peleg D (2002) Local majorities, coalitions and monopolies in graphs: a review. Theor Comput Sci 282:231–257MathSciNetzbMATHCrossRefGoogle Scholar
  52. Potterat JJ, Phillips-Plummer L, Muth SQ, Rothenberg RB, Woodhouse DE, Maldonado-Long TS, Zimmerman HP, Muth JB (2002) Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs. Sex Transm Infect 78:159–163CrossRefGoogle Scholar
  53. Raeder T, Chawla N (2011) Market basket analysis with networks. Soc Netw Anal Min 1:97–113CrossRefGoogle Scholar
  54. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of 8th ACM KDD. ACM Press, New York, pp 61–70Google Scholar
  55. Shamir R, Sharan R, Tsur D (2004) Cluster graph modification problems. Discrete Appl Math 144(1–2):173–182MathSciNetzbMATHCrossRefGoogle Scholar
  56. Tarjan RE (1974) A note on finding the bridges of a graph. Inf Process Lett 2(6):160–161MathSciNetzbMATHCrossRefGoogle Scholar
  57. Uhlmann J, Weller M (2010) Two-layer planarization parameterized by feedback edge set. In: Proceedings of 7th TAMC, LNCS, vol 6108, Springer, Berlin, pp 431–442Google Scholar
  58. Wang P, Moeller SA (2002) Fire control on graphs. J Comb Math Comb Comput 41:19–34MathSciNetzbMATHGoogle Scholar
  59. Watts D, Peretti J, Frumin M (2007) Viral marketing for the real world. Harv Bus Rev 85(5):22–23Google Scholar
  60. Zhang W, Wu W, Wang F, Xu K (2012) Positive influence dominating sets in power-law graphs. Soc Netw Anal Min 2(1):31–37zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • André Nichterlein
    • 1
    Email author
  • Rolf Niedermeier
    • 1
  • Johannes Uhlmann
    • 1
  • Mathias Weller
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations