Advertisement

Tumor Biology

, Volume 37, Issue 11, pp 14929–14937 | Cite as

Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer

  • Yifan Lian
  • Juan Wang
  • Jing Feng
  • Jie Ding
  • Zhonghua Ma
  • Juan Li
  • Peng Peng
  • Wei De
  • Keming Wang
Original Article

Abstract

Long non-coding RNA (lncRNA) modulates gene expression, while lncRNA dysregulation is associated with human cancer. Furthermore, while recent studies have shown that lncRNA IRAIN plays an important role in other malignancies, the role of IRAIN in pancreatic cancer (PC) progression remains unclear. In this study, we found that upregulation of lncRNA IRAIN was significantly correlated with tumor size, TNM stage, and lymph node metastasis in a cohort of 37 PC patients. In vitro experiments showed that knockdown of IRAIN by small interfering RNA (siRNA) significantly induced cell apoptosis and inhibited cell proliferation in both BxPC-3 and PANC-1 cells. Further mechanism study showed that, by binding to histone demethylase lysine-specific demethylase 1 (LSD1), an enhancer of zeste homolog 2 (EZH2), IRAIN reduced PC tumor cell apoptosis and induced growth arrest by silencing the expression of Kruppel-like factor 2 (KLF2) and P15. Moreover, IRAIN expression was inversely correlated with that of KLF2 and P15 in PC tissues. To our knowledge, this is the first report elucidating the role and mechanism of IRAIN in PC progression.

Keywords

Pancreatic cancer Apoptosis lncRNA IRAIN LSD1 EZH2 

Notes

Acknowledgments

This work was supported by the Six Talents Peak Project of Jiangsu Province (WSN-050), the Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK13178), and the Medical Science and Technology Development Foundation, Nanjing Medical University (2014NJMUZD074).

Compliance with ethical standards

Informed consent was obtained from all patients. Our study was approved by the Research Ethics Committee of Nanjing Medical University, China.

Conflicts of interest

None

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Hussain SP. Pancreatic cancer: current progress and future challenges. Int J Biol Sci. 2016;12(3):270–2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wolfgang CL et al. Recent progress in pancreatic cancer. CA Cancer J Clin. 2013;63(5):318–48.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Guttman M et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391–407.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lian, Y., et al., The long noncoding RNA HOXA transcript at the distal tip promotes colorectal cancer growth partially via silencing of p21 expression. Tumour Biol, 2015.Google Scholar
  8. 8.
    Li Y et al. HBXIP and LSD1 Scaffolded by lncRNA Hotair mediate transcriptional activation by c-Myc. Cancer Res. 2016;76(2):293–304.CrossRefPubMedGoogle Scholar
  9. 9.
    Nie FQ et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14(1):268–77.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang H et al. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during hepatitis B virus-induced liver carcinogenesis. Cancer Res. 2015;75(11):2363–74.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tsai MC et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Khalil AM et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhou, Q., et al., Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour Biol, 2015.Google Scholar
  14. 14.
    Zang, C., et al., Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer. Oncotarget, 2016.Google Scholar
  15. 15.
    Feng J et al. A novel long noncoding RNA IRAIN regulates cell proliferation in non small cell lung cancer. Int J Clin Exp Pathol. 2015;8(10):12268–75.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang W et al. Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling. Oncotarget. 2015;6(34):35830–42.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Xu TP et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene. 2015;34(45):5648–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Wolff L, Bies J. p15Ink4b functions in determining hematopoietic cell fates: implications for its role as a tumor suppressor. Blood Cells Mol Dis. 2013;50(4):227–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Ferre F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17(1):106–16.CrossRefPubMedGoogle Scholar
  20. 20.
    Mohamadkhani A, Long Noncoding RNA. In interaction with RNA binding proteins in hepatocellular carcinoma. Hepat Mon. 2014;14(5):e18794.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cheng Y et al. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget. 2015;6(13):10840–52.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim K et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32(13):1616–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Jiao F et al. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int J Mol Sci. 2015;16(4):6677–93.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jin K et al. Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer. Drug Des Devel Ther. 2015;9:1247–55.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ye Y et al. High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma. J Transl Med. 2015;13:137.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, Z.Y., et al., Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 2016.Google Scholar
  28. 28.
    Li JH et al. Discovery of protein-lncRNA interactions by integrating large-scale CLIP-Seq and RNA-Seq datasets. Front Bioeng Biotechnol. 2014;2:88.PubMedGoogle Scholar
  29. 29.
    Qin Y et al. LSD1 sustains pancreatic cancer growth via maintaining HIF1alpha-dependent glycolytic process. Cancer Lett. 2014;347(2):225–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Volkel P et al. Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res. 2015;7(2):175–93.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Han, T., et al., EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer. Oncotarget, 2016.Google Scholar
  32. 32.
    Zhang, D., et al., KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells. Tumour Biol, 2015.Google Scholar
  33. 33.
    Li G et al. Reduced levels of p15INK4b, p16INK4a, p21cip1 and p27kip1 in pancreatic carcinoma. Mol Med Rep. 2012;5(4):1106–10.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol. 2003;4(2).Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yifan Lian
    • 1
  • Juan Wang
    • 1
  • Jing Feng
    • 2
  • Jie Ding
    • 1
  • Zhonghua Ma
    • 1
  • Juan Li
    • 1
  • Peng Peng
    • 3
  • Wei De
    • 4
  • Keming Wang
    • 1
  1. 1.Department of Oncology, Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Department of OncologyThe Second Hospital of NanjingNanjingPeople’s Republic of China
  4. 4.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations