Tumor Biology

, Volume 37, Issue 10, pp 13059–13075 | Cite as

Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance

  • Peyman Ranji
  • Tayyebali Salmani Kesejini
  • Sara Saeedikhoo
  • Ali Mohammad Alizadeh


Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.


Cancer stem cell Drug resistance Nanotechnology Gene therapy Immunotherapy Review 



ATP-binding cassette subfamily G member 2


ATP-binding cassette transporter B5




Aldehyde dehydrogenase 1


Acute myeloid leukemia


Adenine nucleotide translocase 2


All-trans retinoic acid


Gold nanorods


Breast cancer type 1


Carcinoma-associated fibroblast


Checkpoint kinase


Colony stimulating factor 1


Cancer stem cells


Deimmunized Pseudomonas exotoxin fused to anti-CD133 scFv with a KDEL terminus




Diffuse large B cell lymphoma




Dolichyl-phosphate N-acetylglucosamine phosphotransferase 1




Epidermal growth factor receptor


Epithelial cell adhesion molecule


Extracellular-signal-regulated kinases


Epithelial specific antigen




Folate hyaluronic acidoctadecyl


FMS-like receptor tyrosine kinase 3


Glioblastoma multiforme


78 kDa glucose-regulated protein


Glycogen synthase kinase 3 beta




Hyaluronic acidoctadecyl


HA poly(ethyleneimine)/HA






Poly(ethylene glycol)


Histone deacetylase 6


Human epidermal growth factor receptor 2


Hepatocyte growth factor


Heat shock protein 90


Janus family kinases


Jun N-terminal kinase


Lipoic acid


Plasmid DNA


Mitogen-activated protein kinase




Monoclonal antibody


Multidrug resistance protein 1


Multiple myeloma


Monomethoxy polyethylene glycol–polylactic acid/glycolic acid–poly(l-lysine) triblock copolymer






Non-small cell lung cancer


Poly(ethylene glycol)


Poly(ethylene oxide)


Platelet-derived growth factor


Phosphoinositide 3




Phosphatase and tensin homologue deleted on chromosome 10


Receptor-type protein tyrosine phosphatase k




Permeability glycoprotein


N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl] amino}-1,3-benzothiazol-2-yl; sulfanyl]acetamide)


Type I receptor tyrosine kinase-like orphan receptor


Receptor tyrosine kinase




Stem cell factor


Short hairpin RNA


Signal transducers and activators of transcription


Somatic stem cells


Tyrosine kinase inhibitors





This study was founded by Tehran University of Medical Sciences (Grant Number 26012).

Compliance with ethical standards

Conflicts of interest

The author(s) report no conflicts of interest and are responsible for the content of the paper.


  1. 1.
    Johari-Ahar M, Barar J, Alizadeh AM, Davaran S, Omidi Y, Rashidi M-R. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J Drug Target. 2016;24(2):120–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomed. 2012;7(4):597–615.CrossRefGoogle Scholar
  3. 3.
    Andrews TE, Wang D, Harki DA. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Deliv Transl Res. 2013;3(2):121–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Xue X, Liang X-J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer. 2012;31(2):100.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Farsinejad S, Gheisary Z, Samani SE, Alizadeh AM. Mitochondrial targeted peptides for cancer therapy. Tumor Biol. 2015;36(8):5715–25.CrossRefGoogle Scholar
  6. 6.
    Vaz AP, Ponnusamy MP, Batra SK. Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Deliv Transl Res. 2013;3(2):113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Alama A, Orengo AM, Ferrini S, Gangemi R. Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies? Drug Discov Today. 2012;17(9):435–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol. 2012;3(3):32–42.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14(3):150–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 2011;102(5):991–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Ranji P, Heydari Z, Alizadeh AM. Nanobiotechnological approaches to overcome drug resistance in breast cancer. Curr Cancer Drug Targets. 2015;15(7):544–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Clevers H. The cancer stem cell: premises, promises and challenges. Nature Med. 2011;313–9.Google Scholar
  13. 13.
    Chen L, Bourguignon LY. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer. 2014;13(1):1.CrossRefGoogle Scholar
  14. 14.
    Gu J, Fang X, Hao J, Sha X. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials. 2015;45:99–114.PubMedCrossRefGoogle Scholar
  15. 15.
    Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets. 2010;14(6):621–32.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Aguilar-Gallardo C, Rutledge EC, Martínez-Arroyo AM, Hidalgo JJ, Domingo S, Simón C. Overcoming challenges of ovarian cancer stem cells: novel therapeutic approaches. Stem Cell Rev. 2012;8(3):994–1010.PubMedCrossRefGoogle Scholar
  17. 17.
    Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Stem cell marker (Nanog) and Stat-3 signaling promote microRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31(2):149–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas ML, Coyle KM, Sultan M, Vaghar-Kashani A, Marcato P. Chemoresistance in cancer stem cells and strategies to overcome resistance. Chemotherapy: Open Access. 2014;2014.Google Scholar
  19. 19.
    Jordan AR, Racine RR, Hennig MJ, Lokeshwar VB. The role of CD44 in disease pathophysiology and targeted treatment. Frontiers In Immunol. 2015;6.Google Scholar
  20. 20.
    Hong SP, Wen J, Bang S, Park S, Song SY. CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Inter J Cancer. 2009;125(10):2323–31.CrossRefGoogle Scholar
  21. 21.
    Miletti-González KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res. 2005;65(15):6660–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283(25):17635–51.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang X, Singh A, Choy E, Hornicek FJ, Amiji MM, Duan Z. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Sci Rep. 2015;5.Google Scholar
  24. 24.
    Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release. 2015;205:144–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu Y, Sun J, Lian H, Cao W, Wang Y, He Z. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J Pharm Sci. 2014;103(5):1538–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu YP, Liu CF, Ma DX, Lu F, Zhang JJ, Kong HL. [Effect of CD44 gene silence on multi-drug resistance reversal and biologic activity in K562/A02 cells]. Zhongguo ShiYan Xue Ye Xue Za Zhi. 2010;18(2):335–9.Google Scholar
  27. 27.
    Opyrchal M, Salisbury JL, Iankov I, Goetz MP, McCubrey J, Gambino MW, et al. Inhibition of Cdk2 kinase activity selectively targets the CD44+/CD24−/low stem-like subpopulation and restores chemosensitivity of SUM149PT triple-negative breast cancer cells. Inter j Oncol. 2014;45(3):1193–9.Google Scholar
  28. 28.
    Ahmadipour F, Noordin MI, Mohan S, Arya A, Paydar M, Looi CY, et al. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24−/low): an in vitro study. Drug Des Dev Ther. 2015;9:1193.Google Scholar
  29. 29.
    Fargeas CA, Florek M, Huttner WB, Corbeil D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem. 2003;278(10):8586–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Dubreuil V, Marzesco A-M, Corbeil D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol. 2007;176(4):483–95.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.PubMedGoogle Scholar
  32. 32.
    Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355–78.PubMedCrossRefGoogle Scholar
  33. 33.
    Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic. 2001;2(2):82–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. P Natl Acad Sci. 1997;94(23):12425–30.CrossRefGoogle Scholar
  35. 35.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  36. 36.
    Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2(4):951–63.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chao C, Carmical JR, Ives KL, Wood TG, Aronson JF, Gomez GA, et al. CD133+ colon cancer cells are more interactive with the tumor microenvironment than CD133- cells. Lab Investig. 2012;92(3):420–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Shimozato O, Waraya M, Nakashima K, Souda H, Takiguchi N, Yamamoto H, et al. Receptor-type protein tyrosine phosphatase k directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene. 2015;34(15):1949–60.Google Scholar
  39. 39.
    Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. P Natl Acad Sci. 2013;110(17):6829–34.CrossRefGoogle Scholar
  40. 40.
    Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, et al. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One. 2013;8(1):e54193.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Liu Y-P, Yang C-J, Huang M-S, Yeh C-T, Wu AT, Lee Y-C, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating notch signaling. Cancer Res. 2013;73(1):406–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Bolderson E, Richard DJ, Zhou B-BS, Khanna KK. Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res. 2009;15(20):6314–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, et al. Inhibition of ataxia telangiectasia-and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133+ tumor-initiating cell fraction. Stem Cells. 2011;29(3):418–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, AB H, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Yeh C-T, Wu AT, Chang PM-H, Chen K-Y, Yang C-N, Yang S-C, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. A J Res Crit Care Medicine. 2012;186(11):1180–8.CrossRefGoogle Scholar
  46. 46.
    Skubitz AP, Taras EP, Boylan KL, Waldron NN, Oh S, Panoskaltsis-Mortari A, et al. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecolo Oncol. 2013;130(3):579–87.CrossRefGoogle Scholar
  47. 47.
    Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li Y-M, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006;66(15):7445–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao L, Yang Y, Zhou P, Ma H, Zhao X, He X, et al. Targeting CD133high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J Immunother. 2015;38(6):217–28.PubMedCrossRefGoogle Scholar
  49. 49.
    Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, MV R, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6(19):17514–31.Google Scholar
  50. 50.
    Lin F, Yan W, Wen T, Wu G. [Metformin induces apoptosis in hepatocellular carcinoma Huh-7 cells in vitro and its mechanism]. Zhonghua zhong liu za zhi [Chinese Journal of Oncology]. 2013;35(10):742–6.Google Scholar
  51. 51.
    Kiyoi H, Naoe T. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Inter J hematol. 2006;83(4):301–8.CrossRefGoogle Scholar
  52. 52.
    Linnekin D, Mou S, Deberry CS, Weiler SR, Keller JR, Ruscetti FW, et al. Stem cell factor, the JAK-STAT pathway and signal transduction. Leukemia & lymphoma. 1997;27(5–6):439–44.CrossRefGoogle Scholar
  53. 53.
    Awad AJ, Burns TC, Zhang Y, Abounader R. Targeting MET for glioma therapy. Neurosurg Focus. 2014;37(6):E10.PubMedCrossRefGoogle Scholar
  54. 54.
    Schmoll H-J, Cunningham D, Sobrero A, Karapetis CS, Rougier P, Koski SL, et al. Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: a double-blind, randomized phase III study (HORIZON III). J Clin Oncol. 2012;30(29):3588–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Heinrich MC, Griffith D, McKinley A, Patterson J, Presnell A, Ramachandran A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res. 2012;18(16):4375–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Gene Dev. 2008;22(10):1276–312.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Inter J Mol Sci. 2014;15(8):13768–801.CrossRefGoogle Scholar
  58. 58.
    Xiao Z, Sperl B, Ullrich A, Knyazev P. Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget. 2014;5(24):12877.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Deng R, Wang X, Liu Y, Yan M, Hanada S, Xu Q, et al. A new gamboge derivative compound 2 inhibits cancer stem-like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. J Cell Mol Med. 2013;17(11):1422–33.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dos Santos C, McDonald T, Ho YW, Liu H, Lin A, Forman SJ, et al. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood. 2013;122(11):1900–13.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    O’Farrell AM, Yuen HA, Smolich B, Hannah AL, Louie SG, Hong W, et al. Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res. 2004;28(7):679–89. doi: 10.1016/j.leukres.2003.11.004.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang S, Cui B, Lai H, Liu G, Ghia EM, Widhopf GF, et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy. P Natl Acad Sci. 2014;111(48):17266–71.CrossRefGoogle Scholar
  63. 63.
    Lebron MB, Brennan L, Damoci CB, Prewett MC, O’Mahony M, Duignan IJ, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol & Ther. 2014;15(9):1208–18.CrossRefGoogle Scholar
  64. 64.
    Srikanth M, Das S, Berns EJ, Kim J, Stupp SI, Kessler JA. Nanofiber-mediated inhibition of focal adhesion kinase sensitizes glioma stemlike cells to epidermal growth factor receptor inhibition. Neuro-oncol. 2013;15(3):319–29.Google Scholar
  65. 65.
    Padhye SS, Guin S, Yao H-P, Zhou Y-Q, Zhang R, Wang M-H. Sustained expression of the RON receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Mol Pharma. 2011;8(6):2310–9.CrossRefGoogle Scholar
  66. 66.
    Rath P, Lal B, Ajala O, Li Y, Xia S, Kim J, et al. In vivo c-Met pathway inhibition depletes human glioma xenografts of tumor-propagating stem-like cells. Transl Oncol. 2013;6(2):104–IN1.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Giles FJ, Cooper MA, Silverman L, Karp JE, Lancet JE, Zangari M, et al. Phase II study of SU5416–a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor–in patients with refractory myeloproliferative diseases. Cancer. 2003;97(8):1920–8. doi: 10.1002/cncr.11315.PubMedCrossRefGoogle Scholar
  68. 68.
    Stacchiotti S, Negri T, Palassini E, Conca E, Gronchi A, Morosi C, et al. Sunitinib malate and figitumumab in solitary fibrous tumor: patterns and molecular bases of tumor response. Mol Cancer Ther. 2010;9(5):1286–97. doi: 10.1158/1535-7163.mct-09-1205.PubMedCrossRefGoogle Scholar
  69. 69.
    Boumendjel A, Macalou S, Valdameri G, Pozza A, Gauthier C, Arnaud O, et al. Targeting the multidrug ABCG2 transporter with flavonoidic inhibitors: in vitro optimization and in vivo validation. Curr Med Chem. 2011;18(22):3387–401.PubMedCrossRefGoogle Scholar
  70. 70.
    Bhatia A, Schäfer H-J, Hrycyna CA. Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Biochem. 2005;44(32):10893–904.CrossRefGoogle Scholar
  71. 71.
    Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer and Metastasis Rev. 2007;26(1):39–57.CrossRefGoogle Scholar
  72. 72.
    Diestra JE, Scheffer GL, Catala I, Maliepaard M, Schellens JH, Scheper RJ, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol. 2002;198(2):213–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheffer G, et al. Impaired breast cancer resistance protein mediated drug transport in plasma cells in multiple myeloma. Leukemia Res. 2005;29(12):1455–8.CrossRefGoogle Scholar
  74. 74.
    Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L, et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood. 2006;108(12):3881–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dou J, Jiang C, Wang J, Zhang X, Zhao F, Hu W, et al. Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol Int. 2011;35(3):227–34.PubMedCrossRefGoogle Scholar
  76. 76.
    To KK, Tomlinson B. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists. Br J Pharmacol. 2013;170(5):1137–51.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wang N, Wang Z, Peng C, You J, Shen J, Han S, et al. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis. 2014;35(11):2544–54.Google Scholar
  78. 78.
    Sims-Mourtada J, Izzo J, Ajani J, Chao K. Sonic hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene. 2007;26(38):5674–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim JE, Singh RR, Cho-Vega JH, Drakos E, Davuluri Y, Khokhar FA, et al. Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod Pathol. 2009;22(10):1312–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Singh RR, Kunkalla K, Qu C, Schlette E, Neelapu SS, Samaniego F, et al. ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma. Oncogene. 2011;30(49):4874–86.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Jang J-Y, Jeon Y-K, Kim C-W. Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells. BMC Cancer. 2010;10(1):391.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jang J-Y, Kim M-K, Jeon Y-K, Joung Y-K, Park K-D, Kim C-W. Adenovirus adenine nucleotide translocator-2 shRNA effectively induces apoptosis and enhances chemosensitivity by the down-regulation of ABCG2 in breast cancer stem-like cells. Exp Mol Med. 2012;44(4):251–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Yang C, Xiong F, Dou J, Xue J, Zhan X, Shi F, et al. Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model. Oncotarget. 2015;6(29):27714–24.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Peng H, Dong Z, Qi J, Yang Y, Liu Y, Li Z, et al. A novel two mode-acting inhibitor of ABCG2-mediated multidrug transport and resistance in cancer chemotherapy. PLoS One. 2009;4(5):e5676.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li YT, Chua MJ, Kunnath AP, Chowdhury EH. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. Int J Nanomedicine. 2012;7:2473.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Teng Y, Bai M, Sun Y, Wang Q, Li F, Xing J, et al. Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro. Int J Nanomedicine. 2015;10:5447.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Wei Y, Ma Y, Zhao Q, Ren Z, Li Y, Hou T, et al. New use for an old drug: inhibiting ABCG2 with sorafenib. Mol Cancer Ther. 2012;11(8):1693–702.PubMedCrossRefGoogle Scholar
  89. 89.
    Hou H, Sun H, Lu P, Ge C, Zhang L, Li H, et al. Tunicamycin potentiates cisplatin anticancer efficacy through the DPAGT1/Akt/ABCG2 pathway in mouse xenograft models of human hepatocellular carcinoma. Mol Cancer Ther. 2013;12(12):2874–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Vogt T, Hafner C, Bross K, Bataille F, Jauch KW, Berand A, et al. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer. 2003;98(10):2251–6. doi: 10.1002/cncr.11775.PubMedCrossRefGoogle Scholar
  91. 91.
    Thiessen B, Stewart C, Tsao M, Kamel-Reid S, Schaiquevich P, Mason W, et al. A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol. 2010;65(2):353–61. doi: 10.1007/s00280-009-1041-6.PubMedCrossRefGoogle Scholar
  92. 92.
    Sladek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol. 2003;17(1):7–23.PubMedCrossRefGoogle Scholar
  93. 93.
    Black WJ, Stagos D, Marchitti SA, Nebert DW, Tipton KF, Bairoch A, et al. Human aldehyde dehydrogenase genes: alternatively-spliced transcriptional variants and their suggested nomenclature. Pharmacogenet Genom. 2009;19(11):893.CrossRefGoogle Scholar
  94. 94.
    Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 2011;7(2):292–306.PubMedCrossRefGoogle Scholar
  95. 95.
    Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15(12):4234–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Moreb JS, Muhoczy D, Ostmark B, Zucali JR. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol. 2007;59(1):127–36.PubMedCrossRefGoogle Scholar
  98. 98.
    Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4(6):697–720.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Krause U, Ryan D, Clough B, Gregory C. An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity. Cell Death Dis. 2014;5(2):e1093.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Golubovskaya V, O’Brien S, Ho B, Heffler M, Conroy J, Hu Q, et al. Down-regulation of ALDH1A3, CD44 or MDR1 sensitizes resistant cancer cells to FAK autophosphorylation inhibitor Y15. J Cancer Res Clin Oncol. 2015;1–19.Google Scholar
  101. 101.
    Li S-Y, Sun R, Wang H-X, Shen S, Liu Y, Du X-J, et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release. 2015;205:7–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Bertrand G, Maalouf M, Boivin A, Battiston-Montagne P, Beuve M, Levy A, et al. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev. 2014;10(1):114–26.PubMedCrossRefGoogle Scholar
  103. 103.
    Xu Y, Wang J, Li X, Liu Y, Dai L, Wu X, et al. Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials. 2014;35(16):4667–77.PubMedCrossRefGoogle Scholar
  104. 104.
    Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337(15):1021–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Budd GT, Adamson PC, Gupta M, Homayoun P, Sandstrom SK, Murphy RF, et al. Phase I/II trial of all-trans retinoic acid and tamoxifen in patients with advanced breast cancer. Clin Cancer Res. 1998;4(3):635–42.PubMedGoogle Scholar
  106. 106.
    An H, Kim JY, Lee N, Cho Y, Oh E, Seo JH. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway. Biochem Biophys Res Commun. 2015;466(4):696–703.PubMedCrossRefGoogle Scholar
  107. 107.
    Kubo M, Kanaya N, Petrossian K, Ye J, Warden C, Liu Z, et al. Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Res Treat. 2013;137(1):93–107.PubMedCrossRefGoogle Scholar
  108. 108.
    Pandrangi SL, Chikati R, Chauhan PS, Kumar CS, Banarji A, Saxena S. Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells—an in vitro and in silico study. Tumor Biol. 2014;35(1):723–37.CrossRefGoogle Scholar
  109. 109.
    Jokinen E, Laurila N, Koivunen P, Koivunen JP. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features. Oncotarget. 2014;5(19):9295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Grishina O, Schmoor C, Dohner K, Hackanson B, Lubrich B, May AM, et al. DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer. 2015;15:430. doi: 10.1186/s12885-015-1432-5.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res. 2009;69(14):5627–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer. 2007;96(3):417–23.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinog. 2010;31(11):1913–21.CrossRefGoogle Scholar
  114. 114.
    Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nature cell Biol. 2009;11(2):162–71.PubMedCrossRefGoogle Scholar
  115. 115.
    Schnell U, Kuipers J, Giepmans BN. EpCAM proteolysis: new fragments with distinct functions? Biosci Rep. 2013;33(2):e00030.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Lu T-Y, Lu R-M, Liao M-Y, Yu J, Chung C-H, Kao C-F, et al. Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chemist. 2010;285(12):8719–32.CrossRefGoogle Scholar
  117. 117.
    Münz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, et al. Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int. 2010;10(1):1.CrossRefGoogle Scholar
  118. 118.
    Lund K, Bostad M, Skarpen E, Braunagel M, Kiprijanov S, Krauss S, et al. The novel EpCAM-targeting monoclonal antibody 3–17I linked to saporin is highly cytotoxic after photochemical internalization in breast, pancreas and colon cancer cell lines. MAbs. 2014;6(4):1038–50.Google Scholar
  119. 119.
    Salnikov AV, Groth A, Apel A, Kallifatidis G, Beckermann BM, Khamidjanov A, et al. Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. J Cell Mol Med. 2009;13(9b):4023–33.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Simon M, Stefan N, Plückthun A, Zangemeister-Wittke U. Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv. 2013;10(4):451–68.PubMedCrossRefGoogle Scholar
  121. 121.
    Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12(1):612–31.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Subramanian N, Kanwar JR, Kanwar RK, Sreemanthula J, Biswas J, Khetan V, et al. EpCAM aptamer-siRNA chimera targets and regress epithelial cancer. PLoS One. 2015;10(7):e0132407.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wang T, Gantier MP, Xiang D, Bean AG, Bruce M, Zhou S-F, et al. EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics. 2015;5(12):1456.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhan Q, Wang C, Ngai S. Ovarian cancer stem cells: a new target for cancer therapy. BioMed Res Int. 2013;2013.Google Scholar
  125. 125.
    Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumor Biol. 2014;35(9):8483–523.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Peyman Ranji
    • 1
  • Tayyebali Salmani Kesejini
    • 1
  • Sara Saeedikhoo
    • 1
  • Ali Mohammad Alizadeh
    • 1
  1. 1.Cancer Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations