Advertisement

Tumor Biology

, Volume 37, Issue 10, pp 13687–13694 | Cite as

Total and mutated EGFR quantification in cell-free DNA from non-small cell lung cancer patients detects tumor heterogeneity and presents prognostic value

  • E. Alegre
  • J. P. Fusco
  • P. Restituto
  • D. Salas-Benito
  • M. E. Rodríguez-Ruiz
  • M. P. Andueza
  • M. J. Pajares
  • A. Patiño-García
  • R. Pio
  • M. D. Lozano
  • A. Gúrpide
  • J. M. Lopez-Picazo
  • I. Gil-Bazo
  • J. L. Perez-Gracia
  • A. Gonzalez
Original Article

Abstract

Mutation analysis of epidermal growth factor receptor (EGFR) gene is essential for treatment selection in non-small cell lung cancer (NSCLC). Analysis is usually performed in tumor samples. We evaluated the clinical utility of EGFR analysis in plasma cell-free DNA (cfDNA) from patients under treatment with EGFR inhibitors. We selected 36 patients with NSCLC and EGFR-activating mutations. Blood samples were collected at baseline and during treatment with EGFR inhibitors. Wild-type EGFR, L858R, delE746-A750, and T790M mutations were quantified in cfDNA by droplet digital PCR. Stage IV patients had higher total circulating EGFR copy levels than stage I (3523 vs. 1003 copies/mL; p < 0.01). There was high agreement for activating mutations between baseline cfDNA and tumor samples, especially for L858R mutation (kappa index = 0.679; p = 0.001). In 34 % of advanced NSCLC patients, we detected mutations in cfDNA not previously detected in tumor samples and double mutations in 17 %. Patients with baseline total EGFR copy levels above the median presented decreased overall survival (OS) (341 vs. 870 days, p < 0.05) and progression-free survival (PFS) (238 vs. 783 days; p < 0.05) compared with those with total EGFR copy levels below the median. Patients with baseline concentrations of activating mutations above the median (94 copies/mL) had lower OS (317 vs. 805 days; p < 0.05) and PFS (195 vs. 724 days; p < 0.05). During follow-up, T790M resistance mutation was detected in 53 % of patients. Total and mutated EGFR analysis in cfDNA seems a relevant tool to characterize the molecular profile and prognosis of NSCLC patients harboring EGFR mutations.

Keywords

Cell-free DNA Droplet digital PCR Non-small cell lung cancer EGFR mutation Prognosis Tumor heterogeneity 

Abbreviations

EGFR

Epidermal growth factor receptor

NSCLC

Non-small cell lung cancer

cfDNA

Cell-free DNA

ddPCR

Droplet digital PCR

IQR

Interquartile range

TKI

Tyrosine kinase inhibitors

PBMC

Peripheral blood mononuclear cells

OS

Overall survival

PFS

Progression-free survival

Notes

Acknowledgments

We would like to thank Dra. María Romero for her support in manuscript preparation and the Biobank of the University of Navarra for its collaboration.

Supplementary material

13277_2016_5282_MOESM1_ESM.docx (16 kb)
Supplementary Table 1 (DOCX 16 kb)
13277_2016_5282_MOESM2_ESM.pptx (219 kb)
ESM 1 (PPTX 219 kb)

References

  1. 1.
    Malvezzi M, Bertuccio P, Rosso T, Rota M, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann Oncol. 2015;26(4):779–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr KM, Peters S, et al. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii27–39.CrossRefPubMedGoogle Scholar
  3. 3.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(7):341–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Bethune G, Bethune D, Ridgway N, Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis. 2010;2(1):48–51.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Siegelin MD, Borczuk AC. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Investig. 2014;94(2):129–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Sakurada A, Shepherd FA, Tsao MS. Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer. 2006;7(Suppl 4):S138–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Mok TS, YL W, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013;31(8):1070–80.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67–81.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lozano MD, Zulueta JJ, Echeveste JI, Gurpide A, Seijo LM, Martin-Algarra S, et al. Assessment of epidermal growth factor receptor and K-ras mutation status in cytological stained smears of non-small cell lung cancer patients: correlation with clinical outcomes. Oncologist. 2011;16(6):877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coghlin CL, Smith LJ, Bakar S, Stewart KN, Devereux GS, Nicolson MC, et al. Quantitative analysis of tumor in bronchial biopsy specimens. J Thorac Oncol. 2010;5(4):448–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer. 2014;110(1):55–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88.CrossRefPubMedGoogle Scholar
  16. 16.
    Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48(15):948–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Altman DG. Practical statistics for medical research. 1st ed. London; New York: Chapman and Hall; 1991.Google Scholar
  20. 20.
    Sholl LM, Yeap BY, Iafrate AJ, Holmes-Tisch AJ, Chou YP, MT W, et al. Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Res. 2009;69(21):8341–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo K, Zhang ZP, Han L, Han J, Wang J, Zhou YA, et al. Detection of epidermal growth factor receptor mutation in plasma as a biomarker in Chinese patients with early-stage non-small cell lung cancer. Oncotargets Ther. 2015;8:3289–96.CrossRefGoogle Scholar
  22. 22.
    Zhao X, Han RB, Zhao J, Wang J, Yang F, Zhong W, et al. Comparison of epidermal growth factor receptor mutation statuses in tissue and plasma in stage I-IV non-small cell lung cancer patients. Respiration. 2013;85(2):119–25.CrossRefPubMedGoogle Scholar
  23. 23.
    Mok T, YL W, Lee JS, CJ Y, Sriuranpong V, Sandoval-Tan J, et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res. 2015;21(14):3196–203.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu G, Ye X, Dong Z, YC L, Sun Y, Liu Y, et al. Highly sensitive droplet digital PCR method for detection of EGFR-activating mutations in plasma cell-free DNA from patients with advanced non-small cell lung cancer. J Mol Diagn. 2015;17(3):265–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Jakobsen JN, Santoni-Rugiu E, Ravn J, Sorensen JB. Intratumour variation of biomarker expression by immunohistochemistry in resectable non-small cell lung cancer. Eur J Cancer. 2013;49(11):2494–503.CrossRefPubMedGoogle Scholar
  26. 26.
    Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Imamura F, Uchida J, Kukita Y, Kumagai T, Nishino K, Inoue T, et al. Monitoring of treatment responses and clonal evolution of tumor cells by circulating tumor DNA of heterogeneous mutant EGFR genes in lung cancer. Lung Cancer. 2016;94:68–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res. 2015;21(15):3552–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Angulo B, Conde E, Suarez-Gauthier A, Plaza C, Martinez R, Redondo P, et al. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry. PLoS One. 2012;7(8):e43842.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tseng JS, Yang TY, Tsai CR, Chen KC, Hsu KH, Tsai MH, et al. Dynamic plasma EGFR mutation status as a predictor of EGFR-TKI efficacy in patients with EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2015;10(4):603–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Paweletz CP, Sacher A, Raymond CK, Alden RS, O’Connell A, Mach SL, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res. 2016;22(4):915–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015;90(3):509–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Ishii H, Azuma K, Sakai K, Kawahara A, Yamada K, Tokito T, et al. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: correlation with paired tumor samples. Oncotarget. 2015;6(31):30850–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Denis MG, Vallee A, Theoleyre S. EGFR T790M resistance mutation in non small-cell lung carcinoma. Clin Chim Acta. 2015;444:81–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Karachaliou N, Mayo-De Las Casas C, Queralt C, de Aguirre I, Melloni B, Cardenal F, et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol. 2015;1(2):149–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget. 2016;7(6):6984–93.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Seki Y, Fujiwara Y, Kohno T, Takai E, Sunami K, Goto Y, et al. Picoliter-droplet digital polymerase chain reaction-based analysis of cell-free plasma DNA to assess EGFR mutations in lung adenocarcinoma that confer resistance to tyrosine-kinase inhibitors. Oncologist. 2016;21(2):156–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Oxnard GR, Arcila ME, Chmielecki J, Ladanyi M, Miller VA, Pao W. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res. 2011;17(17):5530–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Z, Chen R, Wang S, Zhong J, Wu M, Zhao J, et al. Quantification and dynamic monitoring of EGFR T790M in plasma cell-free DNA by digital PCR for prognosis of EGFR-TKI treatment in advanced NSCLC. PLoS One. 2014;9(11):e110780.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • E. Alegre
    • 1
    • 2
    • 3
  • J. P. Fusco
    • 4
  • P. Restituto
    • 1
    • 3
  • D. Salas-Benito
    • 3
    • 4
  • M. E. Rodríguez-Ruiz
    • 3
    • 4
  • M. P. Andueza
    • 4
  • M. J. Pajares
    • 3
    • 5
    • 6
  • A. Patiño-García
    • 3
    • 7
  • R. Pio
    • 2
    • 3
    • 5
  • M. D. Lozano
    • 3
    • 8
  • A. Gúrpide
    • 3
    • 4
  • J. M. Lopez-Picazo
    • 3
    • 4
  • I. Gil-Bazo
    • 3
    • 4
  • J. L. Perez-Gracia
    • 3
    • 4
  • A. Gonzalez
    • 1
    • 2
    • 3
  1. 1.Clinical Chemistry DepartmentClínica Universidad de NavarraPamplonaSpain
  2. 2.Department of Biochemistry and GeneticsUniversidad de NavarraPamplonaSpain
  3. 3.IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
  4. 4.Department of OncologyClínica Universidad de NavarraPamplonaSpain
  5. 5.Program in Solid Tumors and Biomarkers|Centro de Investigación Médica Aplicada (CIMA)PamplonaSpain
  6. 6.Department of HistologyUniversidad de NavarraPamplonaSpain
  7. 7.Department of Pediatrics and CIMA LAB DiagnosticsClínica Universidad de NavarraPamplonaSpain
  8. 8.Department of PathologyClínica Universidad de NavarraPamplonaSpain

Personalised recommendations