Tumor Biology

, Volume 37, Issue 10, pp 13403–13412 | Cite as

Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription

  • Fenyong Chen
  • Jiadong Mo
  • Li ZhangEmail author
Original Article


Despite great advances have been made in the understanding of biology of osteosarcoma, the molecular mechanisms involved in osteosarcoma tumorigenesis and progression are still largely unknown. Long noncoding RNA (lncRNA) is a new type of RNA molecule, which plays pivotal roles in many tumors. lncRNA BCAR4 has been identified as an oncogenetic lncRNA involved in the progression of breast cancer. However, the functions and clinical significances of BCAR4 in osteosarcoma are unknown now. In this study, we found that BCAR4 was significantly upregulated in osteosarcoma tissues. Increased expression of BCAR4 was significantly correlated with large tumor size, advanced Enneking stage, lung metastasis, and poor prognosis. Functional experiments demonstrated that knockdown of BCAR4 inhibits the proliferation and migration of osteosarcoma cell in vitro. Consistently, knockdown of BCAR4 inhibits osteosarcoma tumorigenesis and lung metastasis in vivo. Chromatin isolation by RNA purification assay showed that BCAR4 physically associates with the promoters of GLI2 target genes. The depletion of BCAR4 inhibits the expression of GLI2 target genes and GLI2 reporter luciferase activity in a dose-dependent manner. The expression of BCAR4 and GLI2 target genes is significantly correlated in osteosarcoma tissues. Depletion of DLI2 abolished the effects of BCAR4 on osteosarcoma. Taken together, these findings demonstrated that BCAR4 promotes osteosarcoma progression via activating GLI2-dependent gene transcription and serves as a potential prognostic biomarker and a therapeutic target of osteosarcoma.


Long noncoding RNA Osteosarcoma Proliferation Metastasis GLI2 pathway 


Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_5256_Fig7_ESM.gif (13 kb)
Figure S1

Depletion of BCAR4 does not regulate normal osteoblast cells proliferation. a The expression of BCAR4 after transfection of BCAR4 specific shRNAs into hFOB 1.19 cells. b The effects of BCAR4 depletion on hFOB 1.19 cells proliferation were assessed using the CCK-8 assay, and the relative number of cells to 0 h is presented. Data are shown as the mean ± SD from at least three independent experiments. **P < 0.01 by Student’s t-test. (GIF 13 kb)

13277_2016_5256_MOESM1_ESM.tif (155 kb)
High Resolution Image (TIFF 155 kb)


  1. 1.
    Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Ando K, Heymann MF, Stresing V, Mori K, Redini F, Heymann D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel). 2013;5(2):591–616.CrossRefGoogle Scholar
  3. 3.
    Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer. 2009;125(1):229–34.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Choi YJ, Lee HW, Lee YS, Shim DM, Seo SW. RRP12 is a crucial nucleolar protein that regulates p53 activity in osteosarcoma cells. Tumour Biol. 2015. doi: 10.1007/s13277-015-4062-2. Google Scholar
  6. 6.
    Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, et al. A sleeping beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet. 2015;47(6):615–24.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Azam AT, Bahador R, Hesarikia H, Shakeri M, Yeganeh A. Downregulation of microRNA-217 and microRNA-646 acts as potential predictor biomarkers in progression, metastasis, and unfavorable prognosis of human osteosarcoma. Tumour Biol. 2015. doi: 10.1007/s13277-015-3821-4. PubMedGoogle Scholar
  8. 8.
    Bassampour SA, Abdi R, Bahador R, Shakeri M, Torkaman A, Yahaghi E, et al. Downregulation of miR-133b/miR-503 acts as efficient prognostic and diagnostic factors in patients with osteosarcoma and these predictor biomarkers are correlated with overall survival. Tumour Biol. 2015. doi: 10.1007/s13277-015-3918-9. PubMedGoogle Scholar
  9. 9.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5):666–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, et al. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281(3):802–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Long-noncoding RNAs in basal cell carcinoma. Tumour Biol. 2016. doi: 10.1007/s13277-016-4927-z.PubMedGoogle Scholar
  14. 14.
    Lemos AE, Ferreira LB, Batoreu NM, de Freitas PP, Bonamino MH, ER G. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol. 2016. doi: 10.1007/s13277-016-5012-3. Google Scholar
  15. 15.
    Huang W, Thomas B, Flynn RA, Gavzy SJ, Wu L, Kim SV, et al. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature. 2015;528(7583):517–22.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014;26(5):722–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Fayda M, Isin M, Tambas M, Guveli M, Meral R, Altun M, et al. Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumour Biol. 2015. doi: 10.1007/s13277-015-4189-1. PubMedGoogle Scholar
  18. 18.
    Saghaeian Jazi M, Samaei NM, Ghanei M, Shadmehr MB, Mowla SJ. Overexpression of the non-coding SOX2OT variants 4 and 7 in lung tumors suggests an oncogenic role in lung cancer. Tumour Biol. 2016. doi: 10.1007/s13277-016-4901-9. PubMedGoogle Scholar
  19. 19.
    Lin A, Li C, Xing Z, Hu Q, Liang K, Han L et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol 2016.Google Scholar
  20. 20.
    Guo X, Xia J, Deng K. Long non-coding RNAs: emerging players in gastric cancer. Tumour Biol. 2014;35(11):10591–600.CrossRefPubMedGoogle Scholar
  21. 21.
    Sang H, Liu H, Xiong P, Zhu M. Long non-coding RNA functions in lung cancer. Tumour Biol. 2015;36(6):4027–37.CrossRefPubMedGoogle Scholar
  22. 22.
    Meijer D, van Agthoven T, Bosma PT, Nooter K, Dorssers LC. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol Cancer Res. 2006;4(6):379–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159(5):1110–25.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Godinho MF, Wulfkuhle JD, Look MP, Sieuwerts AM, Sleijfer S, Foekens JA, et al. BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib. Br J Cancer. 2012;107(6):947–55.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Godinho M, Meijer D, Setyono-Han B, Dorssers LC, van Agthoven T. Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol. 2011;226(7):1741–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Godinho MF, Sieuwerts AM, Look MP, Meijer D, Foekens JA, Dorssers LC, et al. Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br J Cancer. 2010;103(8):1284–91.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nagao-Kitamoto H, Setoguchi T, Kitamoto S, Nakamura S, Tsuru A, Nagata M, et al. Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Lett. 2015;356(2 Pt B):855–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Elsawa SF, Almada LL, Ziesmer SC, Novak AJ, Witzig TE, Ansell SM, et al. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J Biol Chem. 2011;286(24):21524–34.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Inaguma S, Kasai K, Ikeda H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Oncogene. 2011;30(6):714–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Furler RL, Uittenbogaart CH. GLI2 regulates TGF-beta1 in human CD4+ T cells: implications in cancer and HIV pathogenesis. PLoS One. 2012;7(7):e40874.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, et al. A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma. 2012;2012:704872.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Overholtzer M, Rao PH, Favis R, XY L, Elowitz MB, Barany F, et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci U S A. 2003;100(20):11547–52.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jaffe N, Puri A, Gelderblom H. Osteosarcoma: evolution of treatment paradigms. Sarcoma. 2013;2013:203531.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2015;36(3):1477–86.CrossRefPubMedGoogle Scholar
  36. 36.
    El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP, et al. Translational activation of HIF1alpha by YB-1 promotes sarcoma metastasis. Cancer Cell. 2015;27(5):682–97.CrossRefPubMedGoogle Scholar
  37. 37.
    Thiyagarajan S, Bhatia N, Reagan-Shaw S, Cozma D, Thomas-Tikhonenko A, Ahmad N, et al. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res. 2007;67(22):10642–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang W, Liu X, Choy E, Mankin H, Hornicek FJ, Duan Z. Targeting hedgehog-GLI-2 pathway in osteosarcoma. J Orthop Res. 2013;31(3):502–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, et al. Role of GLI2 in the growth of human osteosarcoma. J Pathol. 2011;224(2):169–79.CrossRefPubMedGoogle Scholar
  40. 40.
    Nagao-Kitamoto H, Nagata M, Nagano S, Kitamoto S, Ishidou Y, Yamamoto T, et al. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int J Cancer. 2015;136(6):1276–84.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Orthopaedics, Union HospitalFujian Medical UniversityFuzhouChina
  2. 2.College of Orthopaedics and TraumatologyFujian University of Traditional Chinese MedicineFuzhouChina

Personalised recommendations