Advertisement

Tumor Biology

, Volume 37, Issue 10, pp 13177–13184 | Cite as

Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer

  • Qianqian Sun
  • Wenjing Zhang
  • Yanjie Guo
  • Zhuyao Li
  • Xiaonan Chen
  • Yuanyuan Wang
  • Yuwen Du
  • Wenqiao Zang
  • Guoqiang ZhaoEmail author
Original Article

Abstract

In this work, the in vitro experiments about biological mechanisms of curcumin were conducted using the gastric cancer cell lines SGC-7901 and BGC-823. After 24-h exposure to curcumin at the concentrations of 5, 10, 15, 20, and 40 μmol/L, two cells showed the decreased proliferation and increased apoptosis abilities. Real-time PCR, Cell Counting Kit-8 (CCK-8) assay, western blotting, and cell apoptosis assay were used to further study the underlying mechanisms of curcumin. The first stage of our studies showed that curcumin affected the expression of miR-33b, which, in turn, affected the expression of the X-linked inhibitor of apoptosis protein (XIAP) messenger RNA (mRNA). Next, curcumin was also identified to regulate the proliferation and apoptosis of SGC-7901 and BGC-823 cells. Further bioinformatics analysis and luciferase reporter assays proved that XIAP was one of the target genes of miR-33b. In the next stage, SGC-7901 and BGC-823 cells were treated with 20 μL curcumin, miR-33b mimics, and small interfering RNA (siRNA) of XIAP, respectively. The results showed that curcumin had similar effects on cell growth and apoptosis as the upregulation of miR-33b and the upregulation of the siRNA of XIAP. The results that followed from the restore experiments showed that curcumin affected cell growth and apoptosis presumably by upregulating the XIAP targeting in gastric cancer. Collectively, our results indicate that curcumin-miR-33b-XIAP coupling might be an important mechanism by which curcumin induces the apoptosis of SGC-7901 and BGC-823 cells.

Keywords

Curcumin miR-33b XIAP Proliferation Apoptosis Gastric cancer 

Notes

Acknowledgments

The authors are grateful to all staff at the study center that contributed to this study. This study was supported by a grant from the Education Agency of Henan (No. 13A310671).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Piazuelo MB, Correa P. Gastric cáncer: overview. Colomb Med (Cali). 2013;44:192–201.Google Scholar
  2. 2.
    Takashima A, Shirao K, Hirashima Y, Takahari D, Okita NT, Nakajima TE, et al. Sequential chemotherapy with methotrexate and 5-fluorouracil for chemotherapy-naive advanced gastric cancer with disseminated intravascular coagulation at initial diagnosis. J Cancer Res Clin Oncol. 2010;136:243–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Hobert O. Gene regulation by transcription factors and transnational silencing. Cell. 2007;131:25–8.CrossRefGoogle Scholar
  5. 5.
    Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223:102–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One. 2013;8:e59667.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wu C, Zheng X, Li X, Fesler A, Hu W, Chen L, et al. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget. 2016;7:14522–36.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Li Y, Chen D, Jin LU, Liu J, Li Y, Su Z, et al. Oncogenic microRNA-142-3p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Oncol Lett. 2016;11:1235–41.PubMedGoogle Scholar
  9. 9.
    Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, et al. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 2016;7:538–49.PubMedGoogle Scholar
  10. 10.
    Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2014;21:343–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang F, Yang R, Zhang G, Cheng R, Bai Y, Zhao H, et al. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol. 2015 Dec 2.Google Scholar
  12. 12.
    Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.CrossRefPubMedGoogle Scholar
  13. 13.
    Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One. 2016;11:e0146553.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang H, Chen X, Li D, He Y, Li Y, Du Z, et al. Combination of α-Tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLoS One. 2015;10:e0144293.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, et al. Curcumin inhibits non-small cell lung cancer cells metastasis through the Adiponectin/NF-κb/MMPs signaling pathway. PLoS One. 2015;10:e0144462.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin ML, YC L, Chen HY, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog. 2014;53:360–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu X, Sun K, Song A, Zhang X, Zhang X, He X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol. 2014;12:389.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ding XQ, TT G, Wang W. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res. 2015;59:2355–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Guo H, Xu Y, Q F. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol. 2015;36:8511–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015;234:151–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and Oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23:29–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, et al. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 2015;5:9995.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, et al. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol 2015;47:2141–2152.Google Scholar
  25. 25.
    Xu N, Li Z, Yu Z, Yan F, Liu Y, Lu X, et al. MicroRNA-33b suppresses migration and invasion by targeting c-Myc in osteosarcoma cells. PLoS One. 2014;9:e115300.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yin H, Song P, Su R, Yang G, Dong L, Luo M, et al. DNA methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer. Sci Rep. 2016;6:18824.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hock M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 2001;6:253–61.CrossRefGoogle Scholar
  28. 28.
    Werner TA, Tamkan-Ölcek Y, Dizdar L, Riemer JC, Wolf A, Cupisti K, et al. Survivin and XIAP: two valuable biomarkers in medullary thyroid carcinoma. Br J Cancer. 2016;114:427–34.CrossRefPubMedGoogle Scholar
  29. 29.
    Tong QS, Zheng LD, Wang L, Zeng FQ, Chen FM, Dong JH, et al. Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther. 2005;12:509–14.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Qianqian Sun
    • 1
  • Wenjing Zhang
    • 2
  • Yanjie Guo
    • 3
  • Zhuyao Li
    • 3
  • Xiaonan Chen
    • 1
  • Yuanyuan Wang
    • 1
  • Yuwen Du
    • 1
  • Wenqiao Zang
    • 1
  • Guoqiang Zhao
    • 1
    • 4
    Email author
  1. 1.School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  2. 2.School of Basic MedicineHenan University of Traditional Chinese MedicineZhengzhouChina
  3. 3.School of Clinical Medicine, Zhengzhou UniversityZhengzhouChina
  4. 4.Collaborative Innovation Center of Cancer ChemopreventionZhengzhouChina

Personalised recommendations