Tumor Biology

, Volume 37, Issue 9, pp 11679–11689 | Cite as

Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells

  • Fatemeh Norozi
  • Ahmad Ahmadzadeh
  • Saeid Shahrabi
  • Tina Vosoughi
  • Najmaldin SakiEmail author


Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000–2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.


Mesenchymal stem cells Cancer cell Metastasis Tumor microenvironment 



This paper is issued from the thesis of Fatemeh Norozi, MSc student of hematology and blood banking. This work was financially supported by grant IR. AJUMS. REC. TH94/8 from vice chancellor for Research Affairs of Ahvaz Jundishapur University of Medical Sciences.

Authors’ contributions

N.S. conceived the manuscript and revised it; A.A., F.N., S. Sh. and T.V. wrote the manuscript. F. N and N.S. prepared the figures and tables.

Compliance with ethical standards

Conflict of interest



  1. 1.
    Khan AA, Paul A, Abbasi S, Prakash S. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. Int J Nanomedicine. 2011;6:1069.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Westerweel PE, Verhaar MC. Directing myogenic mesenchymal stem cell differentiation. Circ Res. 2008;103(6):560–1.PubMedCrossRefGoogle Scholar
  4. 4.
    Nadri S, Soleimani M, Mobarra Z, Amini S. Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Commun. 2008;377(2):423–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Vempati P, Popel AS, Mac GF. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014;25(1):1–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, et al. The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol. 2013;19(3):8–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol. 2010;222(2):268–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.PubMedCrossRefGoogle Scholar
  10. 10.
    Lin G, Liu G, Banie L, Wang G, Ning H, Lue TF, et al. Tissue distribution of mesenchymal stem cell marker Stro-1. Stem Cells Dev. 2011;20(10):1747–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109(4):1743–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Huang S, Ouyang N, Lin L, Chen L, Wu W, Su F, et al. HGF-induced PKCζ activation increases functional CXCR4 expression in human breast cancer cells. PLoS One. 2012;7(1):e29124.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Locatelli V, Bianchi VE. Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol 2014;2014.Google Scholar
  16. 16.
    Bowers LW, Rossi EL, O’Flanagan CH. The role of the insulin/IGF system in cancer: lessons learned from clinical trials and the energy balance-cancer link. Frontiers in Endocrinology. 2015;6.Google Scholar
  17. 17.
    Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J (Yakhteh). 2011;13(3):131.Google Scholar
  18. 18.
    Shi H, Cheng Y, Ye J, Cai P, Zhang J, Li R, et al. bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through reactive oxygen species production via the PI3K/Akt-Rac1-JNK pathways. Int J Biol Sci. 2015;11(7):845.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5):419–27.Google Scholar
  20. 20.
    Buschmann IR, Hoefer IE, van Royen N, Katzer E, Braun-Dulleaus R, Heil M, et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis. 2001;159(2):343–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Hong I-S, Lee H-Y, Kang K-S. Mesenchymal stem cells and cancer: friends or enemies? Mutat Res/Fundam Mol Mech Mutagen. 2014;768:98–106.CrossRefGoogle Scholar
  22. 22.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 2014;74(5):1576–87.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Baban B, Penberthy WT, Mozaffari MS. The potential role of indoleamine 2, 3 dioxygenase (IDO) as a predictive and therapeutic target for diabetes treatment: a mythical truth. EPMA J. 2010;1(1):46–55.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Mathieu M-E, Saucourt C, Mournetas V, Gauthereau X, Thézé N, Praloran V, et al. LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev Rep. 2012;8(1):1–15.CrossRefGoogle Scholar
  28. 28.
    Li X, Yang Q, Yu H, Wu L, Zhao Y, Zhang C, et al. LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget. 2014;5(3):78.Google Scholar
  29. 29.
    Luheshi N, Rothwell N, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol. 2009;157(8):1318–29.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kuai W-X, Wang Q, Yang X-Z, Zhao Y, Yu R, Tang X-J. Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol: WJG. 2012;18(9):979.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, et al. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 2014;61:176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Li Y, Zheng L, Xu X, Song L, Li Y, Li W, et al. Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing. Stem Cell Res Ther. 2013;4(5):113.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gibbs BF, Yasinska IM, Oniku AE, Sumbayev VV. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PLoS One. 2011;6(7):e22502.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gao C, Li S, Zhao T, Chen J, Ren H, Zhang H, et al. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression. PloS one. 2015;10(3).Google Scholar
  37. 37.
    Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70 % hepatectomy. Surgery. 2008;143(6):790–802.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jung Y, Wang J, Schneider A, Sun Y-X, Koh-Paige A, Osman N, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts: a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508.PubMedCrossRefGoogle Scholar
  39. 39.
    Xiao Q, Ye S, Oberhollenzer F, Mayr A, Jahangiri M, Willeit J, et al. SDF1 gene variation is associated with circulating SDF1alpha level and endothelial progenitor cell number: the Bruneck study. PLoS One. 2008;3(12):e4061-e.CrossRefGoogle Scholar
  40. 40.
    Lysko DE, Putt M, Golden JA. SDF1 regulates leading process branching and speed of migrating interneurons. J Neurosci. 2011;31(5):1739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Perron JC, Dodd J. Structural distinctions in BMPs underlie divergent signaling in spinal neurons. Neural Dev. 2012;7(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Rahim F, Hajizamani S, Mortaz E, Ahmadzadeh A, Shahjahani M, Shahrabi S, et al. Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone marrow research. 2014;2014.Google Scholar
  45. 45.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.PubMedCrossRefGoogle Scholar
  46. 46.
    Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology. 1997;26(3):634–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007;86(1):8–16.PubMedCrossRefGoogle Scholar
  49. 49.
    van Deventer HW, Wu QP, Bergstralh DT, Davis BK, O’Connor BP, Ting JP-Y, et al. CC chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol. 2008;173(1):253–64.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol-oncol Stem Cell Res. 2015;9(2):95.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29(2):249–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, et al. Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol. 2006;199(2):301–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Li GC, Zhang HW, Zhao QC, Sun L, Yang JJ, Hong L, et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol Letters. 2016;11(2):1089–94.Google Scholar
  54. 54.
    Feng B, Chen L. Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm. 2009;24(6):717–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Dwyer R, Potter-Beirne S, Harrington K, Lowery A, Hennessy E, Murphy J, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Magge SN, Malik SZ, Royo NC, Chen HI, Yu L, Snyder EY, et al. Role of monocyte chemoattractant protein-1 (MCP-1/CCL2) in migration of neural progenitor cells toward glial tumors. J Neurosci Res. 2009;87(7):1547–55.PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt NO, Koeder D, Messing M, Mueller F-J, Aboody KS, Kim SU, et al. Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res. 2009;1268:24–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Investig. 2004;113(9):1364.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Garzotto D, Giacobini P, Crepaldi T, Fasolo A, De Marchis S. Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through met–Grb2 coupling. J Neurosci. 2008;28(23):5901–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci. 2010;107(24):11068–73.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24(5):1254–64.PubMedCrossRefGoogle Scholar
  63. 63.
    Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B, et al. Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg. 2009;88(3):1036–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF, et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 2009;69(23):8862–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci. 2009;106(12):4822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol. 2010;184(10):5885–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells. 2007;25(2):520–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clinical and Translational Oncology. 2015:1–12.Google Scholar
  69. 69.
    Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, et al. Bone marrow–derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 2013;3(5):578–89.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells. 2008;26(6):1406–13.PubMedCrossRefGoogle Scholar
  71. 71.
    Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27(6):1366–75.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Clines GA, Guise TA. Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med. 2008;10:e7.PubMedCrossRefGoogle Scholar
  74. 74.
    Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.PubMedCrossRefGoogle Scholar
  75. 75.
    Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Schuettpelz LG, Link DC. Niche competition and cancer metastasis to bone. J Clin Invest. 2011;121(4):1253.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43(3):461–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, et al. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer. 2009;124(2):326–32.PubMedCrossRefGoogle Scholar
  79. 79.
    Urashima M, Chen BP, Chen S, Pinkus GS, Bronson RT, Dedera DA, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90(2):754–65.PubMedGoogle Scholar
  80. 80.
    Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica. 2008;93(4):524–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Kurtova AV, Tamayo AT, Ford RJ, Burger JA. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113(19):4604–13.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ratajczak M, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia. 2006;20(11):1915–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)–dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Abarrategi A, Mariñas-Pardo L, Mirones I, Rincón E, García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin Transl Oncol. 2011;13(9):611–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Cook G, Dumbar M, Franklin I. The role of adhesion molecules in multiple myeloma. Acta Haematol. 1997;97(1–2):81–9.PubMedGoogle Scholar
  86. 86.
    Faid L, Riet I, Waele M, Facon T, Schots R, Lacor P, et al. Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. Eur J Haematol. 1996;57(5):349–58.PubMedCrossRefGoogle Scholar
  87. 87.
    Thomas X, Anglaret B, Magaud J-P, Epstein J, Archimbaud E. Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leuk Lymphoma. 1998;32(1–2):107–19.PubMedCrossRefGoogle Scholar
  88. 88.
    Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC. Characterization of adhesion molecules on human myeloma cell lines. Blood. 1992;80(9):2306–14.PubMedGoogle Scholar
  89. 89.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93(5):1658–67.PubMedGoogle Scholar
  90. 90.
    Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, et al. Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α4β1-integrin enhances production of osteoclast-stimulating activity. Blood. 2000;96(5):1953–60.PubMedGoogle Scholar
  91. 91.
    Taguchi A, Suei Y, Ogawa I, Naito K, Nagasaki T, Lee K, et al. Metastatic retinoblastoma of the maxilla and mandible. Dentomaxillofacial Radiology. 2014.Google Scholar
  92. 92.
    DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Sohara Y, Shimada H, Minkin C, Erdreich-Epstein A, Nolta JA, DeClerck YA. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res. 2005;65(4):1129–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 2009;69(1):329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fukaya Y, Shimada H, Wang L-C, Zandi E, DeClerck YA. Identification of galectin-3-binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. J Biol Chem. 2008;283(27):18573–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Löffler D, Koczan D, et al. Interleukin-6–dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family–independent survival pathway closely associated with Stat3 activation. Blood. 2004;103(1):242–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer. Ann N Y Acad Sci. 2006;1091(1):151–69.PubMedCrossRefGoogle Scholar
  99. 99.
    Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F. STATs: an old story, yet mesmerizing. Cell J (Yakhteh). 2015;17(3):395.Google Scholar
  100. 100.
    Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T. Translational regulation of X-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res. 2004;64(4):1293–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee G, Piquette-Miller M. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can J Physiol Pharmacol. 2001;79(10):876–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Dreuw A, Hermanns HM, Heise R, Joussen S, Rodríguez F, Marquardt Y, et al. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J Investig Dermatol. 2005;124(1):28–37.PubMedCrossRefGoogle Scholar
  103. 103.
    Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21.PubMedCrossRefGoogle Scholar
  104. 104.
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Shiozawa Y, Eber MR, Berry JE, Taichman RS. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. BoneKEy Reports. 2015;4.Google Scholar
  107. 107.
    Chen X, Armstrong MA, Li G. Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006;84(5):413–21.PubMedCrossRefGoogle Scholar
  108. 108.
    Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, et al. Gene therapy using TRAIL-secreting human umbilical cord blood–derived mesenchymal stem cells against intracranial glioma. Cancer Res. 2008;68(23):9614–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86.PubMedCrossRefGoogle Scholar
  110. 110.
    Serakinci N, Kalkan R, Tulay P. Double-faced role of human mesenchymal stem cells and their role/challenges in cancer therapy. Curr Stem Cell Res Ther. 2016;11(4):343–51.PubMedCrossRefGoogle Scholar
  111. 111.
    Reagan MR, Kaplan DL. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells. 2011;29(6):920–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, et al. Human bone marrow–derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res. 2009;69(23):8932–40.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12(5):615–25.PubMedCrossRefGoogle Scholar
  114. 114.
    Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009;15(23):7246–55.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRefGoogle Scholar
  116. 116.
    Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29(1):11–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Kalervo Väänänen H. Mesenchymal stem cells. Ann Med. 2005;37(7):469–79.PubMedCrossRefGoogle Scholar
  118. 118.
    Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther. 2009;17(1):183–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Houthuijzen J, Daenen L, Roodhart J, Voest E. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012;106(12):1901–6.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14(9):2519–26.PubMedCrossRefGoogle Scholar
  121. 121.
    Vianello F, Villanova F, Tisato V, Lymperi S, Ho K-K, Gomes AR, et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95(7):1081–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58.PubMedCrossRefGoogle Scholar
  123. 123.
    Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, et al. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol. 2015;38(2):93–109.CrossRefGoogle Scholar
  124. 124.
    Stagg J. Mesenchymal stem cells in cancer. Stem Cell Rev. 2008;4(2):119–24.PubMedCrossRefGoogle Scholar
  125. 125.
    Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG, et al. Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood. 2010;116(7):1083–91.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Priest JR, Ramsay NK, Steinherz PG, Tubergen DG, Cairo MS, Sitarz AL, et al. A syndrome of thrombosis and hemorrhage complicating L-asparaginase therapy for childhood acute lymphoblastic leukemia. J Pediatr. 1982;100(6):984–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Priest JR, Ramsay NK, Bennett AJ, Krivit W, Edson JR. The effect of L-asparaginase on antithrombin, plasminogen, and plasma coagulation during therapy for acute lymphoblastic leukemia. J Pediatr. 1982;100(6):990–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Iwamoto S, Mihara K, Downing JR, Pui C-H, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Investig. 2007;117(4):1049.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304–10.PubMedCrossRefGoogle Scholar
  130. 130.
    Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H, et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One. 2009;4(7).Google Scholar
  132. 132.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax. 2010;65(4):362–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2012;22(9):1370–1386.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Fatemeh Norozi
    • 1
  • Ahmad Ahmadzadeh
    • 1
  • Saeid Shahrabi
    • 2
  • Tina Vosoughi
    • 1
  • Najmaldin Saki
    • 1
    Email author
  1. 1.Health Research Institute, Research Center of Thalassemia & HemoglobinopathyAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of biochemistry and hematology, Faculty of MedicineSemnan University of medical sciencesSemnanIran

Personalised recommendations