Advertisement

Tumor Biology

, Volume 37, Issue 10, pp 13733–13742 | Cite as

Knockdown of miR-182 promotes apoptosis via regulating RIP1 deubiquitination in TNF-α-treated triple-negative breast cancer cells

  • Like Wo
  • Dezhao Lu
  • Xidong GuEmail author
Original Article

Abstract

Overexpression of microRNA-182 (miR-182) is found in multiple cancers, but the association of miR-182 expression with the sensitivity of triple-negative breast cancer (TNBC) cells to tumor necrosis factor-alpha (TNF-α) remains unknown. In this study, up-regulation of miR-182 was validated in TNBC patients and cell lines. Knockdown of miR-182 was observed to hinder the proliferation of BT-549 cells. More importantly, knockdown of miR-182 significantly promoted the apoptosis induced by TNF-α treatment in BT-549. JC-1 staining and western blot assays revealed that the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed and the outer mitochondrial membrane potential (MMP) and permeability was altered upon combination of TNF-α with anti-miR-182. We then demonstrated that knockdown of miR-182 up-regulated the expression of cylindromatosis (CYLD) deubiquitinase, which promoted the formation of death-inducing signaling complex (DISC) and subsequent caspase-8 activation in TNF-α-treated BT-549 cells. Collectively, the results of the present study improve our understanding of the role of miR-182 in TNBC, knockdown of which facilitates the degradation of ubiquitin chains on RIP1, leading to the caspase-8 activation and apoptosis in TNF-α-treated TNBC cells. This may be valuable for the development of cancer therapy.

Keywords

TNBC TNF-α miR-182 CYLD Deubiquitination 

Notes

Acknowledgments

This study is supported by the medical and health technology plan of Zhejiang Province (grant no.: 2015KYB268) and the TCM plan of Zhejiang Province (grant no.: 2010ZB038).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jenal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, TjanHeijnen VC. Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol. 2011;137:183–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Tomao F, Papa A, Zaccarelli E, Rossi L, Caruso D, Minozzi M, Vici P, Frati L, Tomao S. Triple-negative breast cancer: new perspectives for targeted therapies. Onco Targets Ther. 2015;8:177–93.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295:2492–502.CrossRefPubMedGoogle Scholar
  5. 5.
    Gucalp A, Traina TA. Triple-negative breast cancer: adjuvant therapeutic options. Chemother Res Pract. 2011;2011:696208.PubMedPubMedCentralGoogle Scholar
  6. 6.
    van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11:397–408.CrossRefPubMedGoogle Scholar
  7. 7.
    Lejeune FJ, Rüegg C, Liénard D. Clinical applications of TNF-alpha in cancer. Curr Opin Immunol. 1998;10:573–80.CrossRefPubMedGoogle Scholar
  8. 8.
    Fang Z, Du R, Edwards A, Flemington EK, Zhang K. The sequence structures of human microRNA molecules and their implications. PLoS One. 2013;8:e54215.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11:644–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yin W, Nie Y, Zhang Z, Xie L, He X. miR-193b acts as a cisplatin sensitizer via the caspase-3-dependent pathway in HCC chemotherapy. Oncol Rep. 2015;34:368–74.PubMedGoogle Scholar
  13. 13.
    Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, Shi L, Chen Z, Huang J, Huang P. miR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol Rep. 2016;35:683–90.PubMedGoogle Scholar
  14. 14.
    Yang WB, Chen PH, Hsu TS, Fu TF, Su WC, Liaw H, Chang WC, Hung JJ. Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget. 2014;5:740–53.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang J, Li J, Shen J, Wang C, Yang L, Zhang X. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer. 2012;12:227.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Husted S, Sokilde R, Rask L, Cirera S, Busk PK, Eriksen J, Litman T. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm. 2011;8:2055–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2011;25:402–8.CrossRefGoogle Scholar
  18. 18.
    Wang G, Wang X, Yu H, Wei S, Williams N, Holmes DL, Halfmann R, Naidoo J, Wang L, Li L, Chen S, Harran P, Lei X, Wang X. Small-molecule activation of the TRAIL receptor DR5 in human cancer cells. Nat Chem Biol. 2013;9:84–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Geserick P, Wang J, Feoktistova M, Leverkus M. The ratio of Mcl-1 and Noxa determines ABT737 resistance in squamous cell carcinoma of the skin. Cell Death Dis. 2014;5:e1412.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem. 2000;275:31199–203.CrossRefPubMedGoogle Scholar
  21. 21.
    De Oliveira Lima F, De Oliveira Costa H, Barrezueta LF, Fujiyama Oshima CT, Silva Jr JA, Gomes TS, Pinheiro Jr N, Neto RA, Franco M. Immunoexpression of inhibitors of apoptosis proteins and their antagonist SMAC/DIABLO in colorectal carcinoma: correlation with apoptotic index, cellular proliferation and prognosis. Oncol Rep. 2009;22:295–303.PubMedGoogle Scholar
  22. 22.
    Wu P, Shi KJ, JJ A, Ci YL, Li F, Hui KY, Yang Y, CM X. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis. 2014;5:e1085.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Abhari BA, Cristofanon S, Kappler R, von Schweinitz D, Humphreys R, Fulda S. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene. 2013;32:3263–73.CrossRefPubMedGoogle Scholar
  24. 24.
    O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol. 2007;17:418–24.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    O’Donnell MA, Ting AT. RIP1 comes back to life as a cell death regulator in TNFR1 signaling. FEBS J. 2011;278:877–87.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY, Li J. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol. 2010;177:29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, Belitskaya-Levy I, Bhardwaj N, Osman I, Hernando E. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A. 2009;106:1814–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lei R, Tang J, Zhuang X, Deng R, Li G, Yu J, Liang Y, Xiao J, Wang HY, Yang Q, Hu G. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene. 2014;33(10):1287–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu H, Wang Y, Li X, Zhang YJ, Li J, Zheng YQ, Liu M, Song X, Li XR. Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1. Tumour Biol. 2013;34:1713–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci. 2010;67:1567–79.CrossRefPubMedGoogle Scholar
  31. 31.
    Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798–811.CrossRefPubMedGoogle Scholar
  32. 32.
    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.CrossRefPubMedGoogle Scholar
  33. 33.
    Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23:2861–74.CrossRefPubMedGoogle Scholar
  34. 34.
    de Almagro MC, Vucic D. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol. 2012;34:200–11.PubMedGoogle Scholar
  35. 35.
    Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 2007;14:400–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Mahul-Mellier AL, Pazarentzos E, Datler C, Iwasawa R, AbuAli G, Lin B, et al. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ. 2012;19:891–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.CrossRefPubMedGoogle Scholar
  39. 39.
    Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003;424:797–801.CrossRefPubMedGoogle Scholar
  40. 40.
    Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011;18:656–65.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Breast SurgeryFirst Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
  2. 2.College of Life ScienceZhejiang Chinese Medical UniversityHangzhouChina

Personalised recommendations