Tumor Biology

, Volume 37, Issue 10, pp 13039–13048 | Cite as

miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis

Review

Abstract

Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.

Keywords

Migration miRNA Stem cell Therapy Tumor 

References

  1. 1.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: ACCR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMedGoogle Scholar
  2. 2.
    Baker M. Cancer stem cells, becoming common. Nat Rep Stem Cells. 2008. doi:10.1038/stemcells.2008.153.Google Scholar
  3. 3.
    Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Investig. 1994;70(1):6–22.PubMedGoogle Scholar
  4. 4.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.CrossRefPubMedGoogle Scholar
  5. 5.
    Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22(3):457–72.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.CrossRefGoogle Scholar
  7. 7.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets. 2013;14(10):1110–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Mishima Y, Stahlhut C, Giraldez AJ. miR-1-2 gets to the heart of the matter. Cell. 2007;129(2):247–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Naraba H, Iwai N. Assessment of the microRNA system in salt sensitive hypertension. Hypertens Res. 2005;28(10):819–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712.PubMedGoogle Scholar
  17. 17.
    Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4 T lymphocytes. Nat Med. 2007;13(10):1241–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Knudson Jr AG, Strong LC, Anderson DE. Heredity and cancer in man. Prog Med Genet. 1973;9:113–58.PubMedGoogle Scholar
  19. 19.
    Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morrison SJ, Qian D, Jerebek L, Thiel BA, Park I-K, Ford PS, Kiel MJ, Schork NJ, Weissman IL, Clarke MF. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168:635–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Nowell PC. The clonal nature of neoplasia. Cancer Cells. 1989;1:29–30.PubMedGoogle Scholar
  23. 23.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197:461–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Schmid M, Haaf T, Grunert D. 5-Azacytidineinduced undercondensations in human chromosomes. Hum Genet. 1984;67:257–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Pereira DS et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci U S A. 1998;95:8239–44.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–12.PubMedGoogle Scholar
  29. 29.
    Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zänker KS. Recurrence cancer stem cells—made by cell fusion? Med Hypotheses. 2009;73:542–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Kanellopoulou C, Muljo SA, Kung ALT, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489–501.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39:380–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chakraborty C, Agoramoorthy G. Stem cells in the light of evolution. Indian J Med Res. 2012;135(6):813–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Chakraborty C, Roy SS, Hsu JM, Agoramoorthy G. Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. Cell J. 2014;15(4):332–9.PubMedGoogle Scholar
  36. 36.
    Roy SS, Hsu CH, Wen ZH, Lin CS, Chakraborty C. A hypothetical relationship between the nuclear reprogramming factors for induced pluripotent stem (iPS) cells generation—bioinformatic and algorithmic approach. Med Hypotheses. 2011;76(4):507–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Chakraborty C, Shah KD, Cao WG, Hsu CH, Wen ZH, Lin CS. Potentialities of induced pluripotent stem (iPS) cells for treatment of diseases. Curr Mol Med. 2010;10(8):756–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009;8:843–52.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 2009;28:3157–70.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D. MIR-451 and Imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun. 2008;376(1):86–90. doi:10.1016/j.bbrc.2008.08.107. CrossRefPubMedGoogle Scholar
  44. 44.
    Wang ZM, Du WJ, Piazza GA, Xi Y. MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacol Sin. 2013;34(11):1374–80. doi:10.1038/aps.2013.134. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40:127–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Ueno H, Price AB, Wilkinson KH, Jass JR, Mochizuki H, Talbot IC. A new prognostic staging system for rectal cancer. Ann Surg. 2004;240:832–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100:3547–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7:86–95.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Farnie G, Clarke RB. Breast stem cells and cancer. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 141–54.CrossRefGoogle Scholar
  53. 53.
    Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMedGoogle Scholar
  54. 54.
    Chong YK, Toh TB, Zaiden N. Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells. 2009;27:29–39.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Donnenberg VS, Luketich JD, Landreneau RJ, et al. Tumorigenic epithelial stem cells and their normal counterparts. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 245–63.CrossRefGoogle Scholar
  57. 57.
    Zaidi HA, Kosztowski T, DiMeco F, Quiñones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neuro-Oncol. 2009;93:49–60.CrossRefGoogle Scholar
  58. 58.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMedGoogle Scholar
  59. 59.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMedGoogle Scholar
  60. 60.
    Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neuro-Oncol. 2008;89:219–24.CrossRefGoogle Scholar
  61. 61.
    Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Okita K, Ichisaka T, Yamanaka S. Generation of germ-line-competent induced pluripotent stem cells. Nature. 2007;448:313–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRefPubMedGoogle Scholar
  64. 64.
    Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.CrossRefPubMedGoogle Scholar
  65. 65.
    Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.CrossRefPubMedGoogle Scholar
  66. 66.
    Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 2001;61:3826–36.PubMedGoogle Scholar
  67. 67.
    Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12:3675–85.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM. A genetically tractable model of human glioma formation. Cancer Res. 2001;61:3556–60.PubMedGoogle Scholar
  69. 69.
    Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61:6674–8.PubMedGoogle Scholar
  70. 70.
    Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res. 2005;65:2065–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63:1589–95.PubMedGoogle Scholar
  72. 72.
    Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res. 2005;65:5172–80.CrossRefPubMedGoogle Scholar
  73. 73.
    Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol. 2004;1:157–63.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15:1913–25.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li J, Lam M. Reproducibility Project: Cancer Biology. Registered report: the microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Elife. 2015;4:e06434. doi:10.7554/eLife.06434. PubMedPubMedCentralGoogle Scholar
  77. 77.
    Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, Gao WQ. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6(27):24017–31.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zoni E, van der Horst G, van de Merbel AF, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of αv- and α6-integrin expression. Cancer Res. 2015;75:2326–36.CrossRefPubMedGoogle Scholar
  79. 79.
    Yata K, Beder LB, Tamagawa S, Hotomi M, Hirohashi Y, Grenman R, Yamanaka N. MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma. Int J Oncol. 2015. doi:10.3892/ijo.2015.3145. PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sun Z, Hu W, Xu J, Kaufmann AM, Albers AE. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro. Int J Oncol. 2015. doi:10.3892/ijo.2015.3142.Google Scholar
  81. 81.
    Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603. doi:10.1016/j.cell.2009.07.011. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Feng ZM, Qiu J, Chen XW, et al. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer. 2015;15:645.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW, Yang MH. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80. doi:10.1038/ncb2910. CrossRefPubMedGoogle Scholar
  84. 84.
    Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, Xiao SD, Ran ZH. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer. 2012;106:1320–30. doi:10.1038/bjc.2012.88. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661–71. doi:10.1002/stem.741. CrossRefPubMedGoogle Scholar
  86. 86.
    Chen DQ, Huang JY, Feng B, et al. Histone deacetylase 1/Sp1/microRNA-200b signaling accounts for maintenance of cancer stem-like cells in human lung adenocarcinoma. PLoS One. 2014;9(10):e109578. doi:10.1371/journal.pone.0109578. .eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Shi Y, Liu C, Liu X, Tang DG, Wang J. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS One. 2014;9(3):e90022. doi:10.1371/journal.pone.0090022. .eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Liu J, Ma L, Wang Z, Wang L, Liu C, Chen R, Zhang J. MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta Biochim Biophys Sin Shanghai. 2014;46(2):92–9. doi:10.1093/abbs/gmt135. CrossRefPubMedGoogle Scholar
  89. 89.
    Ma C, Ding YC, Yu W, Wang Q, Meng B, Huang T. microRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition. Minerva Med 2015;106(4):193–202.Google Scholar
  90. 90.
    Ma C, Huang T, Ding YC, Yu W, Wang Q, Meng B, Luo SX. microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int J Clin Exp Pathol. 2015;8:6533–9 .eCollection 2015PubMedPubMedCentralGoogle Scholar
  91. 91.
    Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133:579–89. doi:10.1002/ijc.28043. CrossRefPubMedGoogle Scholar
  92. 92.
    Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol. 2012;40(3):747–56. doi:10.3892/ijo.2011.1242. PubMedGoogle Scholar
  93. 93.
    Liu F, Kong X, Lv L, Gao J. MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal. FEBS Lett. 2015;589(4):500–6. doi:10.1016/j.febslet.2015.01.009. CrossRefPubMedGoogle Scholar
  94. 94.
    Liu T, Qin W, Hou L, Huang Y. MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway. Tumour Biol. 2015;36(3):1881–93. doi:10.1007/s13277-014-2790-3. CrossRefPubMedGoogle Scholar
  95. 95.
    Liu T, Hou L, Huang Y. EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway. Tumour Biol. 2014;35:7239–47. doi:10.1007/s13277-014-1950-9. CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Chiranjib Chakraborty
    • 1
  • Kok-Yong Chin
    • 2
  • Srijit Das
    • 3
  1. 1.Department of Bioinformatics, School of Computer and Information SciencesGalgotias UniversityUttar PradeshIndia
  2. 2.Department of PharmacologyUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  3. 3.Department of Anatomy, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia

Personalised recommendations