Tumor Biology

, Volume 37, Issue 10, pp 13533–13543 | Cite as

P2RX7-V3 is a novel oncogene that promotes tumorigenesis in uveal melanoma

  • Hui Pan
  • Hongyan Ni
  • LeiLei Zhang
  • Yue Xing
  • Jiayan Fan
  • Peng Li
  • Tianyuan Li
  • Renbing Jia
  • Shengfang Ge
  • He ZhangEmail author
  • Xianqun FanEmail author
Original Article


Uveal melanoma (UM) has a high mortality rate for primary intraocular tumors. Approximately half of UM patients present with untreatable and fatal metastases. Long non-coding RNAs (lncRNAs) have emerged as potent regulatory RNAs that play key roles in various cellular processes and tumorigenesis. However, to date, their roles in UM are not well-known. Here, we identified a transcriptional variant transcribed from the P2RX7 gene locus, named P2RX7-V3 (P2RX7 variant 3), which was expressed at a high level in UM cells. P2RX7-V3 silencing revealed that this variant acts as a necessary UM oncoRNA. Knockdown of P2RX7-V3 expression significantly suppressed tumor growth in vitro and in vivo. A genome-wide cDNA array revealed that a variety of genes were dysregulated following P2RX7-V3 silencing. These observations identified P2RX7-V3 that plays a crucial role in UM tumorigenesis and may serve as a useful biomarker in the diagnosis and prognosis treatment of UM in the future.


Uveal melanoma P2RX7 Variant lncRNA Metastasis oncoRNA 



This work was supported by Scientific Research Program of The National Health and Family Planning Commission of China (201402014) for XQF, The National Natural Science Foundation of China (grant 31470757), The Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning (1410000159), The Shanghai PuJiang Program (13PJ1405700), SMC-ChenXing Yong Scholar Program (2014, Class B), and The Science and Technology Commission of Shanghai (grants 14JC1404100, 14JC1404200, 14430723100). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_5141_MOESM1_ESM.doc (30 kb)
Table S1 (DOC 30 kb)


  1. 1.
    Wu X, Zhu M, Fletcher JA, Giobbie-Hurder A, Hodi FS. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One. 2012;7:e29622.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Harbour JW. The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell Melanoma Res. 2012;25:171–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Patel M, Smyth E, Chapman PB, Wolchok JD, Schwartz GK, Abramson DH, Carvajal RD. Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin Cancer Res. 2011;17:2087–100.CrossRefPubMedGoogle Scholar
  4. 4.
    Ambrosini G, Musi E, Ho AL, de Stanchina E, Schwartz GK. Inhibition of mutant GNAQ signaling in uveal melanoma induces ampk-dependent autophagic cell death. Mol Cancer Ther. 2013;12:768–76.CrossRefPubMedGoogle Scholar
  5. 5.
    Kaur J, Malik MA, Gulati R, Azad SV, Goswami S. Genetic determinants of uveal melanoma. Tumour Biol. 2014;35:11711–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Demirci H, Reed D, Elner VM. Tissue-based microarray expression of genes predictive of metastasis in uveal melanoma and differentially expressed in metastatic uveal melanoma. J Ophthalmic Vis Res. 2013;8:303–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Onken MD, Ehlers JP, Worley LA, Makita J, Yokota Y, Harbour JW. Functional gene expression analysis uncovers phenotypic switch in aggressive uveal melanomas. Cancer Res. 2006;66:4602–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Onken MD, Worley LA, Long MD, Duan S, Council ML, Bowcock AM, Harbour JW. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci. 2008;49:5230–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, Bastian BC. Combined PKC and MEK inhibition in uveal melanoma with gnaq and gna11 mutations. Oncogene. 2014;33:4724–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, Hovland P, Davidorf FH. Germline bap1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48:856–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Aoude LG, Vajdic CM, Kricker A, Armstrong B, Hayward NK. Prevalence of germline bap1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma Res. 2013;26:278–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Maerker DA, Zeschnigk M, Nelles J, Lohmann DR, Worm K, Bosserhoff AK, Krupar R, Jagle H. BAP1 germline mutation in two first grade family members with uveal melanoma. Br J Ophthalmol. 2014;98:224–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44:667–78.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y. TGF-beta-induced upregulation of MALAT1 promotes bladder cancer metastasis by associating with SUZ12. Clin Cancer Res. 2014;20:1531–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG. LNCRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, Oliver PL, Ponting CP. The long non-coding rna paupar regulates the expression of both local and distal genes. EMBO J. 2014;33:296–311.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang YW, Flynn RA, Chen Y, Qu K, Wan B, Wang KC, Lei M, Chang HY. Essential role of LNCRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife. 2014;3:e02046.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fan J, Xing Y, Wen X, Jia R, Ni H, He J, Ding X, Pan H, Qian G, Ge S, Hoffman AR, Zhang H, Fan X. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 2015;16:139.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, Fan X, Hoffman AR, Hu JF. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the KCNQ1 locus. J Cell Biol. 2014;204:61–75.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N, Donovan NC, Kiyohara E, Hsu S, Nelson N, Izraely S, Sagi-Assif O, Witz IP, Ma XJ, Luo Y, Hoon DS. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. J Invest Dermatol. 2015;135:2464–74.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E. The P2X7 receptor is a key modulator of the pi3k/gsk3β/vegf signaling network: evidence in experimental neuroblastoma. Oncogene. 2015;34:5240–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Xia J, Yu X, Tang L, Li G, He T. P2X7 receptor stimulates breast cancer cell invasion and migration via the akt pathway. Oncol Rep. 2015;34:103–10.PubMedGoogle Scholar
  25. 25.
    Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 2010;24:3393–404.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S. Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun. 2005;332:17–27.CrossRefPubMedGoogle Scholar
  27. 27.
    Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C, Agarwal R. Snai1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 2014;13:37.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shang Z, Cai Q, Zhang M, Zhu S, Ma Y, Sun L, Jiang N, Tian J, Niu X, Chen J, Sun Y, Niu Y. A switch from cd44(+) cell to EMT cell drives the metastasis of prostate cancer. Oncotarget. 2015;6:1202–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, Long M, Kabbani W, Yu L, Zhang H, Chen H, Sun X, Boothman DA, Min W, Hsieh JT. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A. 2010;107:2485–90.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010;7:582–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–69.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang LP, Jean S, Li C, Huang Q, Katsaros D, Montone KT, Tanyi JL, Lu Y, Boyd J, Nathanson KL, Li H, Mills GB, Zhang L. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 2014;26:344–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, Han L, Xia R, Wang KM, Yang JS, De W, Shu YQ, Wang ZX. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A, Sarti AC, Bonora M, Syberg S, Corigliano D, Pinton P, Jorgensen NR, Abelli L, Emionite L, Raffaghello L, Pistoia V, Di Virgilio F. Accelerated tumor progression in mice lacking the atp receptor P2X7. Cancer Res. 2015;75:635–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, Jenkins RB, Triche TJ, Malik R, Bedenis R, McGregor N, Ma T, Chen W, Han S, Jing X, Cao X, Wang X, Chandler B, Yan W, Siddiqui J, Kunju LP, Dhanasekaran SM, Pienta KJ, Feng FY, Chinnaiyan AM. The long noncoding RNA SCHLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45:1392–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu D, Huang Y, Kang J, Li K, Bi X, Zhang T, et al. Ncrdeathdb: a comprehensive bioinformatics resource for deciphering network organization of the NCRNA-mediated cell death system.Google Scholar
  37. 37.
    Zhang X, Wu D, Chen L, Li X, Yang J, Fan D, et al. Raid: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.Google Scholar
  38. 38.
    Wang Y, Chen L, Chen B, Li X, Kang J, Fan K, et al. Mammalian NCRNA-disease repository: a global view of NCRNA-mediated disease network.Google Scholar
  39. 39.
    Li Y, Wang C, Miao Z, Bi X, Wu D, Jin N, et al. Virbase: a resource for virus-host NCRNA-associated interactions.Google Scholar
  40. 40.
    Dalman MR, Deeter A, Nimishakavi G, Duan ZH. Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinf. 2012;13(Suppl 2):S11.CrossRefGoogle Scholar
  41. 41.
    Kwekel JC, Vijay V, Desai VG, Moland CL, Fuscoe JC. Age and sex differences in kidney microrna expression during the life span of F344 rats. Biol Sex Differ. 2015;6:1.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Greussing R, Hackl M, Charoentong P, Pauck A, Monteforte R, Cavinato M, Hofer E, Scheideler M, Neuhaus M, Micutkova L, Mueck C, Trajanoski Z, Grillari J, Jansen-Durr P. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts. BMC Genomics. 2013;14:224.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Baumer D, Lee S, Nicholson G, Davies JL, Parkinson NJ, Murray LM, Gillingwater TH, Ansorge O, Davies KE, Talbot K. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet. 2009;5:e1000773.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, Wang SB, Wang YZ, Yang Y, Yang N, Zhou WP, Yang GS, Sun SH. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Kim HJ, Lee DW, Yim GW, Nam EJ, Kim S, Kim SW, Kim YT. Long non-coding RNA HOTAIR is associated with human cervical cancer progression. Int J Oncol. 2015;46:521–30.PubMedGoogle Scholar
  46. 46.
    Wu Y, Zhang L, Zhang L, Wang Y, Li H, Ren X, Wei F, Yu W, Liu T, Wang X, Zhou X, Yu J, Hao X. Long non-coding RNA hotair promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol. 2015;46:2586–94.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Hui Pan
    • 1
  • Hongyan Ni
    • 1
  • LeiLei Zhang
    • 1
  • Yue Xing
    • 1
  • Jiayan Fan
    • 1
  • Peng Li
    • 1
  • Tianyuan Li
    • 1
  • Renbing Jia
    • 1
  • Shengfang Ge
    • 1
  • He Zhang
    • 1
    Email author
  • Xianqun Fan
    • 1
    Email author
  1. 1.Department of Ophthalmology, Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina

Personalised recommendations