Tumor Biology

, Volume 37, Issue 9, pp 12465–12475 | Cite as

Expression of mitochondrial genes MT-ND1, MT-ND6, MT-CYB, MT-COI, MT-ATP6, and 12S/MT-RNR1 in colorectal adenopolyps

  • LaShanale Wallace
  • Sharifeh Mehrabi
  • Methode Bacanamwo
  • Xuebiao Yao
  • Felix O. Aikhionbare
Original Article


Despite improvements in treatment strategies, colorectal cancer (CRC) still has high mortality rates. Most CRCs develop from adenopolyps via the adenoma-carcinoma sequence. A mechanism for inhibition of this sequence in individuals with a high risk of developing CRC is urgently needed. Differential studies of mitochondrial (mt) gene expressions in the progressive stages of CRC with villous architecture are warranted to reveal early risk assessments and new targets for chemoprevention of the disease. In the present study, reverse transcription-quantitative PCR (RT-qPCR) was used to determine the relative amount of the transcripts of six mt genes [MT-RNR1, MT-ND1, MT-COI, MT-ATP6, MT-ND6, and MT-CYB (region 648–15887)] which are involved in the normal metabolism of mitochondria. A total of 42 pairs of tissue samples obtained from colorectal adenopolyps, adenocarcinomas, and their corresponding adjacent normal tissues were examined. Additionally, electron transport chain (ETC), complexes I (NADH: ubiquinone oxidoreductase) and III (CoQH2-cytochrome C reductase), and carbonyl protein group contents were analyzed. Results indicate that there were differential expressions of the six mt genes and elevated carbonyl protein contents among the colorectal adenopolyps compared to their paired adjacent normal tissues (p < 0.05). The levels of complexes I and III were higher in tumor tissues relative to adjacent normal tissues. Noticeably, the expression of MT-COI was overexpressed in late colorectal carcinomas among all studied transcripts. Our data suggest that increased expressions in certain mt genes and elevated levels of ROS may potentially play a critical role in the colorectal tumors evolving from adenopolyps to malignant lesions.


Colorectal tumors Mitochondria Gene expression Carbonyl content Cancer progression 



Mitochondrial encoded 12S ribosomal RNA


Beta actin




Crossing point


Colorectal cancer




Electron transport chain


Familial adenomatous polyposis


Glyceraldehyde 3 phosphate dehydrogenase


Hypoxia inducible factor 1-alpha




ATP synthase F0 subunit 6


Mitochondrial encoded cytochrome oxidase I


Mitochondrial encoded cytochrome b


Mitochondria DNA


Mitochondrial encoded NADH dehydrogenase 1


Mitochondrial encoded NADH dehydrogenase 6


Reactive oxygen species


Reverse transcription quantitative polymerase chain reaction


Tubular adenoma






Villous adenoma



We acknowledge the RCMI G12 MBRC Program from the National Institute of Minority Health and Health Disparities, Grant Number 8G12MD007602. To those investigators whose meritorious works could not be cited due to space limitations, we honestly apologize. This work was supported by grant NIH-NIGMS GM099663 awarded to Dr. Felix O Aikhionbare. We would also like to acknowledge William Roth and Saravanakumar Muthusamy for their technical and editing support. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH-NIMHD and NIGMS.

Author contributions

Conception and design: L. Wallace, F.O. Aikhionbare, and S. Mehrabi; development of methodology: L. Wallace, S. Mehrabi, and F.O. Aikhionbare; acquisition of data: L. Wallace, S. Mehrabi, and M. Bacanamwo; analysis and interpretation of data: L. Wallace, S. Mehrabi, X. Yao, and F.O. Aikhionbare; writing: L. Wallace, S. Mehrabi, and F.O. Aikhionbare.

Compliance with ethical standard

Conflicts of interest

The authors declare no conflicts of interest.


  1. 1.
    Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in mitochondria: small players acting wide. Genes (Basel). 2014;5:865–86.Google Scholar
  2. 2.
    Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol Mech Dis. 2011;6:479–507.CrossRefGoogle Scholar
  3. 3.
    Winawer SJ, Zauber AG, Ho MN, O’Brien MJ, Gottlieb LS, Sternberg SS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med. 1993;329:1977–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends in Genetics. 1993;9:138–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Czarnecka A, Golik P, Bartnik E. Mitochondrial DNA mutations in human neoplasia. J Appl Genet. 2006;47:67–78.CrossRefPubMedGoogle Scholar
  6. 6.
    Weren RDA, Ligtenberg MJL, Kets CM, de Voer RM, Verwiel ETP, Spruijt L, et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet. 2015;47:668–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Bettington M, Walker N, Clouston A, Brown I, Leggett B, Whitehall V. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62:367–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Adams G, Mehrabi S, Vatcharapijarn Y, Iyamu OI, Akwe JA, Grizzle WE, et al. Frequencies of mtDNA mutations in primary tissue of colorectal adenopolyps. Front Biosci (Elite Ed). 2013;5:809–13.Google Scholar
  9. 9.
    Aikhionbare F, Khan M, Carey D, Okoli J, Go R. Is cumulative frequency of mitochondrial DNA variants a biomarker for colorectal tumor progression? Mol Cancer. 2004;3:30.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Polyak K, Li Y, Zhu H, Lengauer C, Willson JKV, Markowitz SD, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20:291–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol. 2011;121:59–63.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mehrabi S, Partridge EE, Seffens W, Yao X, Aikhionbare FO. Oxidatively modified proteins in the serous subtype of ovarian carcinoma. Biomed Res Int. 2014;2014:585083.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chester KA, Robson L, Begent RHJ, Pringle H, Primrose L, Talbot IC, et al. In situ and slot hybridization analysis of RNA in colorectal tumours and normal colon shows distinct distributions of mitochondrial sequences. J Pathol. 1990;162:309–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, et al. Mitochondrial Genome Instability and mtDNA Depletion in Human Cancers. Annals of the New York Academy of Sciences. 2005;1042:109–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Lu X, Walker T, MacManus JP, Seligy VL. Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation. Cancer Research. 1992;52:3718–25.PubMedGoogle Scholar
  16. 16.
    Yamamoto A, Horai S, Yuasa Y. Increased level of mitochondrial gene expression in polyps of familial polyposis coli patients. Biochemical and Biophysical Research Communications. 1989;159:1100–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Abril J, De Heredia ML, González L, Cléries R, Nadal M, Condom E, et al. Altered expression of 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 mitochondrial genes in prostate cancer. Prostate. 2008;68:1086–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Evans P, Lyras L, Halliwell B. Measurement of protein carbonyls in human brain tissue. In: Methods in Enzymology Oxidants and Antioxidants Part B.Academic Press. 1999. p. 145–56.CrossRefGoogle Scholar
  19. 19.
    Beal MF. Oxidatively modified proteins in aging and disease1,2. Free Radical Biology and Medicine. 2002;32:797–803.CrossRefPubMedGoogle Scholar
  20. 20.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. In: Methods in enzymology oxygen radicals in biological systems part B: oxygen radicals and antioxidants. Academic Press. 1990. p. 464–78.CrossRefGoogle Scholar
  21. 21.
    Bragoszewski P, Kupryjanczyk J, Bartnik E, Rachinger A, Ostrowski J. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer. BMC Cancer. 2008;8:292.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, et al. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Molecular and Cellular Probes. 2005;19:101–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research. 2004;64:5245–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Mehrabi S, Wallace L, Cohen S, Yao X, Aikhionbare FO. Differential measurements of oxidatively modified proteins in colorectal adenopolyps. Int J Clin Med. 2015;6:288–99.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grzybowska-Szatkowska L, Slaska B, Rzymowska J, Brzozowska A, Floriańczyk B. Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer. Mol Med Rep. 2014;10:1772–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sun AS, Cederbaum AI. Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Research. 1980;40:4677–81.PubMedGoogle Scholar
  28. 28.
    Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807:620–5.CrossRefGoogle Scholar
  29. 29.
    Akouchekian M, Houshmand M, Akbari MHH, Kamalidehghan B, Dehghan M. Analysis of mitochondrial ND1 gene in human colorectal cancer. J Res Med Sci. 2011;16:50–5.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxidants & Redox Signaling. 2010;14:459–68.CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. Journal of Biological Chemistry. 1990;265:16330–6.PubMedGoogle Scholar
  32. 32.
    Saybaşili H, Yϋksel M, Haklar G, Yalϛin AS. Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal. 2001;3(6):1099–104.CrossRefPubMedGoogle Scholar
  33. 33.
    Dasgupta S, Hoque MO, Upadhyay S, Sidransky D. Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Research. 2008;68:700–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH, et al. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Research. 2014;16:434.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Heerdt BG, Halsey HK, Lipkin M, Augenlicht LH. Expression of mitochondrial cytochrome c oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Research. 1990;50:1596–600.PubMedGoogle Scholar
  36. 36.
    Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS, et al. Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. PROTEOMICS. 2003;3:1801–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Sun AS, Sepkowitz K, Geller SA. A study of some mitochondrial and peroxisomal enzymes in human colonic adenocarcinoma. Laboratory Investigation. 1981;44:13–7.PubMedGoogle Scholar
  38. 38.
    Dmitrenko V, Shostak K, Boyko O, Khomenko O, Rozumenko V, Malisheva T, et al. Reduction of the transcription level of the mitochondrial genome in human glioblastoma. Cancer Letters. 2005;218:99–107.CrossRefPubMedGoogle Scholar
  39. 39.
    Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. Journal of Biological Chemistry. 2000;275(33):25130–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Oppenheimer SR, Mi D, Sanders ME, Caprioli RM. A Molecular Analysis of Tumor Margins by MALDI Mass Spectrometry in Renal Carcinoma. J Proteome Res. 2010;9:2182–90.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Higuchi M. Roles of Mitochondrial DNA Changes on Cancer Initiation and Progression. Cell Biol (Henderson, NV). 2012;1:109.CrossRefGoogle Scholar
  42. 42.
    Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012;287:27255–64.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radical Research. 2012;46:1313–26.CrossRefPubMedGoogle Scholar
  44. 44.
    Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607.CrossRefPubMedGoogle Scholar
  45. 45.
    Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh K. Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer. 2002;1:1–10.CrossRefGoogle Scholar
  46. 46.
    Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G. Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797:314–23.CrossRefGoogle Scholar
  47. 47.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.CrossRefPubMedGoogle Scholar
  48. 48.
    De Rasmo D, Panelli D, Sardanelli AM, Papa S. cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cellular Signalling. 2008;20:989–97.CrossRefPubMedGoogle Scholar
  49. 49.
    Puurand M, Peet N, Piirsoo A, Peetsalu M, Soplepmann J, Sirotkina M, et al. Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena. Mol Cell Biochem. 2012;370:69–78.CrossRefPubMedGoogle Scholar
  50. 50.
    Lim HY, Ho QS, Low J, Choolani M, Wong KP. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion. 2011;11:437–43.CrossRefPubMedGoogle Scholar
  51. 51.
    Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U, et al. Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis. 2003;24:1461–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial dna mutations affecting complexes I and III. Cancer Research. 2006;66:6087–96.CrossRefPubMedGoogle Scholar
  53. 53.
    Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J. Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer. 2005;5:1–11.CrossRefGoogle Scholar
  54. 54.
    Prakash K, Pirozzi G, Elashoff M, Munger W, Waga I, Dhir R, et al. Symptomatic and asymptomatic benign prostatic hyperplasia: molecular differentiation by using microarrays. Proceedings of the National Academy of Sciences. 2002;99:7598–603.CrossRefGoogle Scholar
  55. 55.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of MedicineMorehouse School of MedicineAtlantaUSA
  2. 2.Department of PhysiologyMorehouse School of MedicineAtlantaUSA

Personalised recommendations