Tumor Biology

, Volume 37, Issue 7, pp 8471–8486

Major apoptotic mechanisms and genes involved in apoptosis

  • Yağmur Kiraz
  • Aysun Adan
  • Melis Kartal Yandim
  • Yusuf Baran
Review

Abstract

As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.

Keywords

Intrinsic/extrinsic pathway Bcl-2 Caspase TNF TRAIL p53 

References

  1. 1.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2013;35:495–516.CrossRefGoogle Scholar
  2. 2.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 1999;59:1701–6.Google Scholar
  5. 5.
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;10:1456–62.CrossRefGoogle Scholar
  6. 6.
    Krauss G. Biochemistry of signal transduction and regulation. Ed:VCH Wiley, 3rd Edition. 2003;511–531.Google Scholar
  7. 7.
    Power C, Fanning N, Redmond HP. Cellular apoptosis and organ injury in sepsis: a review. Shoch. 2002;18:197–211.CrossRefGoogle Scholar
  8. 8.
    Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol. 2011;11:1847–57.CrossRefGoogle Scholar
  10. 10.
    Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3:255–63.CrossRefGoogle Scholar
  11. 11.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don’t-eat-me and come-get-me signals. Trends Cell Biol. 2003;13:648–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Mashima T, Naito M, Noguchi K, Miller DK, Nicholson DW, Tsuruo T. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene. 1997;14:1007–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Ziegler U, Groscurth P. Morphological features of cell death. Physiology. 2004;10:124–8.CrossRefGoogle Scholar
  16. 16.
    Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15:2922–33.PubMedGoogle Scholar
  17. 17.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Hengartnere MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.CrossRefGoogle Scholar
  19. 19.
    Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23:2861–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Du C, Fang M, Li Y, Li L, Wang X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Chinnaiyan AM. The apoptosome: heart and soul of the cell death machine. Neoplasia. 1999;1:5–15.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J. 2004;23:2134–45.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192:571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81:495–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296:1635–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4:842–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hitoshi Y, Lorens J, Kitada SI, et al. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity. 1998;8:461–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. 1999;274:1541–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuranaga E. Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells. 2012;17:83–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Yuan J, Shaham S, Ledoux S, Ellis HM, The HHR. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993;75:641–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Shi Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol Cell. 2002;9:459–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Chowdhury I, Tharakan B, Bhat GK. Caspases—an update. Comp Biochem Physiol. 2008;151:10–27.CrossRefGoogle Scholar
  37. 37.
    Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol. 2005;21:35–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Los M, Stroh C, Janicke RU, Schulze-Osthoff K. Caspases: more than just killers? Trends Immunol. 2001;22:31–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Los M, van de Craen M, Penning CL, et al. Requirement of an ICE/CED-3 protease for Fas/APO-1-1 mediated apoptosis. Nature. 1995;37:81–3.CrossRefGoogle Scholar
  41. 41.
    Fantuzzi G, Puren AJ, Harding MW, Livingston DJ, Dinarello CA. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood. 1998;91:2118–25.PubMedGoogle Scholar
  42. 42.
    Vakifahmetoglu-Norberg H, Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol. 2010;20:150–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem. 2001;276:21907–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Van de Craen M, Declercq W. Van den brande I, Fiers W, Vandenabeele P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 1999;6:1117–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304:843–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene. 2003;22:8543–67.PubMedCrossRefGoogle Scholar
  47. 47.
    Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.PubMedCrossRefGoogle Scholar
  48. 48.
    Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276:7320–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Lakhani SA, Masud A, Kuida K, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006;311:847–51.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42:21–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Ghavami S, Eshraghi M, Kadkhoda K, et al. Role of BNIP3 in TNF-induced cell death—TNF upregulates BNIP3 expression. Biochim Biophys Acta. 1793;2009:546–60.Google Scholar
  52. 52.
    Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with procaspase-8. Mol Cell. 2006;22:599–610.PubMedCrossRefGoogle Scholar
  53. 53.
    Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46:497–510.PubMedCrossRefGoogle Scholar
  54. 54.
    Micheau O, Thome M, Schneider P, et al. Gr ̈utter MG. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002;277:45162–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Irmler M, Thome M, Hahne M, et al. Inhibition of death receptors signals by cellular FLIP. Nature. 1997;388:190–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GC. Activation of caspases-8 and -10 by FLIP (L). Biochem J. 2004;382:651–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pop C, Oberst A, Drag M, et al. FLIP (L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433:447–57.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chang DW, Xing Z, Pan Y, et al. c-FLIP8(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21:3704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 1999;13:3179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature. 1999;399:549–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67:2168–74.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kaiser WJ, Vucic D, Miller LK. The Drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett. 1998;440:243–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Eckelman BP, Salvesen GS. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem. 2006;281:3254–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Banks DP, Plescia J, Altieri DC, et al. Survivin does not inhibit caspase-3 activity. Blood. 2000;96:4002–3.PubMedGoogle Scholar
  66. 66.
    Saleem M, Qadir MI, Perveen N, et al. Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des. 2013;82:243–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Sun C, Cai M, Gunasekera AH, et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature. 1999;401:818–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Sun CH, Cai ML, Meadows RP, et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem. 2000;275:33777–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol. 2005;6:287–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2000;3:401–10.CrossRefGoogle Scholar
  71. 71.
    Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by SMAC/DIABLO. Nature. 2000;406:855–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP- interaction motif in caspase-9 and SMAC/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410:112–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Yoo NJ, Kim HS, Kim SY, et al. Immunohistochemical analysis of SMAC/DIABLO expression in human carcinomas and sarcomas. APMIS. 2003;111:382–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis [IAP] irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17:1487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol. 2001;3:28–133.CrossRefGoogle Scholar
  76. 76.
    Ma TL, Ni PH, Zhong J, Tan JH, Qiao MM, Jiang SH. Low expression of XIAP- associated factor 1 in human colorectal cancers. Chin J Dig Dis. 2005;6:10–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Gross A, Mcdonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.PubMedCrossRefGoogle Scholar
  78. 78.
    Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;5:49–63.Google Scholar
  79. 79.
    Pepper C, Bently P. The role of the Bcl-2 family in the modulation of apoptosis. Symp Soc Exp Biol. 2000;52:43–53.PubMedGoogle Scholar
  80. 80.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Frenzel A, Grespi F, Chmelewskij W, Villunger A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis. 2009;14:584–96.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Camisasca DR, Honorato J, Bernardo V, et al. Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45:225–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:126–1132.CrossRefGoogle Scholar
  84. 84.
    Lessene G, Czabotar PE, Colman PM. Bcl-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7:989–1000.PubMedCrossRefGoogle Scholar
  85. 85.
    Hwang JJ, Kuruvilla J, Mendelson D, et al. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res. 2010;16:4038–45.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Anderson MA, Huang D, Roberts A. Targeting Bcl2 for the treatment of lymphoid malignancies. Semin Hematol. 2014;51:219–27.PubMedCrossRefGoogle Scholar
  87. 87.
    Mahmood Z, Shukla Y. Death receptors: targets for cancer therapy. Exp Cell Res. 2010;316:887–99.PubMedCrossRefGoogle Scholar
  88. 88.
    Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317–32.PubMedCrossRefGoogle Scholar
  89. 89.
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Sciences. 1998;281:1305–8.CrossRefGoogle Scholar
  90. 90.
    Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–65.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Naismith JH, Sprang SR. Modularity in the TNF receptor family. Trends Biochem Sci. 1998;23:74–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Fulda S, Debatin KM. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta. 1705;2004:27–41.Google Scholar
  93. 93.
    Bremer E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol. 2013;2013:371854.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000;256:58–66.PubMedCrossRefGoogle Scholar
  95. 95.
    Behrmann I, Walczak H, Krammer PH. Structure of the human APO-1 gene. Eur J Immunol. 1994;24:3057–62.PubMedCrossRefGoogle Scholar
  96. 96.
    Tauzin S, Debure L, Moreau JF, Legembre P. CD95-mediated cell signaling in cancer: mutations and posttranslational modulations. Cell Mol Life Sci. 2012;69:1261–77.PubMedCrossRefGoogle Scholar
  97. 97.
    Scholl V, Stefanoff CG, Hassan R, Spector N, Renault IZ. Mutations within the 5′ region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma. Leuk Lymphoma. 2007;48:957–63.PubMedCrossRefGoogle Scholar
  98. 98.
    Ivanov VN, Ronai Z, Hei TK. Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem. 2006;281:1840–52.PubMedCrossRefGoogle Scholar
  99. 99.
    Tourneur L, Mistou S, Michiels FM, et al. Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene. 2003;22:2795–280.PubMedCrossRefGoogle Scholar
  100. 100.
    Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001;20:5865–77.PubMedCrossRefGoogle Scholar
  101. 101.
    Yang T, Shi R, Chang L, et al. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF-alpha/TNFR1 pathway in vitro and in vivo. J Exp Clin Cancer Res. 2015;34:1–10.CrossRefGoogle Scholar
  102. 102.
    Zhong W, Qin S, Zhu B, et al. Oxysterol-binding protein-related protein 8 [ORP8] increases sensitivity of hepatocellular carcinoma cells to Fas-mediated apoptosis. J Biol Chem. 2015;290:8876–87.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev. 2009;35:280–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Wu GS. TRAIL as a target in anti-cancer therapy. Cancer Lett. 2009;285:1–5.PubMedCrossRefGoogle Scholar
  106. 106.
    O’Leary L, van der Sloot AM, Reis CR, et al. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene. 2015. doi:10.1038/onc.2015.180.PubMedGoogle Scholar
  107. 107.
    Woo JK, Kang JH, Jang YS, et al. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL. Oncol Rep. 2015;3:1947–55.Google Scholar
  108. 108.
    Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Weichhaus M, Chung ST, Connelly L. Osteoprotegerin in breast cancer: beyond bone remodeling. Mol Cancer. 2015;14:117.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lane D, Matte I, Rancourt C, Piché A. Osteoprotegerin [OPG] protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovarian Res. 2012;5:34.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Merino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets. 2007;11:1299–314.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Gong B, Almasan A. Genomic organization and transcriptional regulation of human APO2/TRAIL gene. Biochem Biophys Res Commun. 2000;278:747–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Krieg A, Krieg T, Wenzel M, et al. TRAIL-beta and TRAIL-gamma: two novel splice variants of the human TNF-related apoptosis- inducing ligand (TRAIL) without apoptotic potential. Br J Cancer. 2003;88:918–27.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pal R, Gochhait S, Chattopadhyay S, et al. Functional implication of TRAIL-716 C/T promoter polymorphism on its in vitro and in vivo expression and the susceptibility to sporadic breast tumor. Breast Cancer Res Treat. 2012;126:333–43.CrossRefGoogle Scholar
  115. 115.
    Bos PD, Zhang XHF, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Allen JE, El-Deiry WS. Regulation of the human TRAIL gene. Cancer Biol Ther. 2012;13:1143–51.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets. 2015;25:1–15.CrossRefGoogle Scholar
  118. 118.
    Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. Curr Dir Autoimmun. 2010;11:27–60.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Wachter T, Sprick M, Hausmann D, et al. cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem. 2004;279:52824–34.PubMedCrossRefGoogle Scholar
  122. 122.
    Ebach DR, Riehl TE, Stenson WF. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock. 2005;23:311–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Yun HM, Park KR, Kim EC, Han SB, Yoon do Y, Hong JT. IL-32α suppresses colorectal cancer development via TNFR1-mediated death signaling. Oncotarget. 2015;6:9061–72.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yu S, Hou D, Chen P, et al. Adenosine induces apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells. Biochem Biophys Res Commun. 2015;460:759–65.PubMedCrossRefGoogle Scholar
  125. 125.
    Bake V, Roesler S, Eckhardt I, Belz K, Fulda S. Synergistic interaction of SMAC mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells. Cancer Lett. 2014;355:224–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Tao YF, Lu J, Du XJ, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;26(12):619.CrossRefGoogle Scholar
  127. 127.
    Ruddle NH. Lymphotoxin and TNF: how it all began—a tribute to the travelers. Cytokine Growth Factor Rev. 2014;25:83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chaturvedi MM, LaPushin R, Aggarwal BB. Tumor necrosis factor and lymphotoxin. Qualitative and quantitative differences in the mediation of early and late cellular response. J Biol Chem. 1994;269:14575–83.PubMedGoogle Scholar
  129. 129.
    Etemadi N, Holien JK, Chau D, et al. Lymphotoxin α induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS J. 2013;280:5283–97.PubMedCrossRefGoogle Scholar
  130. 130.
    de Oliveira JG, Rossi AF, Nizato DM, et al. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol. 2015 (Epub ahead of print).Google Scholar
  131. 131.
    Kang YJ, Kim WJ, Bae HU, et al. Involvement of TL1A and DR3 in induction of proinflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005;29:229–35.PubMedCrossRefGoogle Scholar
  132. 132.
    Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol. 2013;60:439–47.PubMedCrossRefGoogle Scholar
  133. 133.
    Oh SB, Hwang CJ, Song SY, et al. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. 2014;353:95–103.PubMedCrossRefGoogle Scholar
  134. 134.
    Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Surget S, Khoury MP, Bourdon J. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57–68.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Mollereau B, Ma D. The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis. 2014;19:1421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Pflaum J, Schlosser S, Müller M. p53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol. 2010;2:a000935.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Chi SW. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47:167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis—the p53 network. J Cell Sci. 2003;116:4077–85.PubMedCrossRefGoogle Scholar
  141. 141.
    Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol. 2010;2:a000968.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Riley MF, You MJ, Multani AS, Lozano G. Mdm2 overexpression and p73 loss exacerbate genomic instability and dampen apoptosis, resulting in B-cell lymphoma. Oncogene. 2015. doi:10.1038/onc.2015.88(Epubaheadofprint).PubMedPubMedCentralGoogle Scholar
  143. 143.
    Jansson MD, Damas ND, Lees M, Jacobsen A, Lund AH. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene. 2014;34:1908–18.PubMedCrossRefGoogle Scholar
  144. 144.
    Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene Suppl. 1998;1:S71–83.Google Scholar
  145. 145.
    Hikisz P, Kiliańska ZM. PUMA, a critical mediator of cell death—one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–69.PubMedCrossRefGoogle Scholar
  146. 146.
    Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002;277:3247–57.PubMedCrossRefGoogle Scholar
  147. 147.
    MacLachlan TK, El-Deiry WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A. 2002;99:9492–7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRefGoogle Scholar
  149. 149.
    Ha JH, Shin JS, Yoon MK, et al. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem. 2013;288:7387–98.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.PubMedCrossRefGoogle Scholar
  151. 151.
    Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1complex. Nat Cell Biol. 2004;6:443–50.PubMedCrossRefGoogle Scholar
  152. 152.
    Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinicaluse. Cold Spring Harb Perspect Biol. 2010;2:a001008.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.PubMedGoogle Scholar
  154. 154.
    Saleem S, Abbasi ZA, Hameed A, Qureshi NR, Khan MA, Azhar A. Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol. 2014;35:7945–50.PubMedCrossRefGoogle Scholar
  155. 155.
    Trbusek M, Smardova J, Malcikova J, et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol. 2011;29:2703–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Wang S, Zhou M, Ouyang J, Geng Z, Wang Z. Tetraarsenictetrasulfide and arsenic trioxide exert synergistic effects on induction of apoptosis and differentiation in acute promyelocytic leukemia cells. PLoS One. 2015;10:e0130343.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gu ZT, Li L, Wu F, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca[2+] dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep. 2015;5:11497.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Sosin AM, Burger AM, Siddiqi A, Abrams J, Mohammad RM, Al-Katib AM. HDM2 antagonist MI-219 [spiro-oxindole], but not Nutlin-3 [cis-imidazoline], regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas. J Hematol Oncol. 2012;5:57.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A. 2008;105:10360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol. 2011;2011:702146.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47:163–74.PubMedCrossRefGoogle Scholar
  162. 162.
    Chen Y, Fu LL, Wen X, et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 2014;19:1177–89.PubMedCrossRefGoogle Scholar
  163. 163.
    Acunzo M, Visone R, Romano G, et al. Mir-130a targets MET and induces trail-sensitivity in NSCLC by downregulating mir-221 and 222. Oncogene. 2012;31:634–42.PubMedGoogle Scholar
  164. 164.
    Hao J, Zhang C, Zhang A, et al. miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep. 2012;27:1504–10.PubMedGoogle Scholar
  165. 165.
    Wang P, Zhuang L, Zhang J, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7:334–45.PubMedCrossRefGoogle Scholar
  166. 166.
    Qin W, Shi Y, Zhao B, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE. 2010;5:e9429.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Satzger I, Mattern A, Kuettler U, et al. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21:509–14.PubMedCrossRefGoogle Scholar
  168. 168.
    Eto K, Iwatsuki M, Watanabe M, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2013;21:343–50.PubMedCrossRefGoogle Scholar
  169. 169.
    Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell. 2010;38:908–15.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Li JH, Xiao X, Zhang YN, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011;120:145–51.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.PubMedGoogle Scholar
  173. 173.
    Gocek E, Wang X, Liu X, Liu CG, Studzinski GP. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 2011;71:6230–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Veronese A, Lupini L, Consiglio J, et al. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res. 2010;70:3140–9.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Tanaka N, Toyooka S, Soh J, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.PubMedGoogle Scholar
  176. 176.
    Shen J, Wan R, Hu G, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 2012;12:91–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer. 2010;126:1029–35.PubMedGoogle Scholar
  178. 178.
    Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.PubMedCrossRefGoogle Scholar
  179. 179.
    Shang J, Yang F, Wang Y, et al. Sun S MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115:772–84.PubMedCrossRefGoogle Scholar
  180. 180.
    Walker JC, Harland RM. MicroRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev. 2009;23:1046–51.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Wu JH, Yao YL, Gu T, et al. MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev. 2014;15:5463–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Hudson RS, Yi M, Esposito D, et al. Microrna-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32:4139–47.PubMedCrossRefGoogle Scholar
  183. 183.
    Floyd DH, Zhang Y, Dey BK, et al. Novel anti-apoptotic microRNAs 582–5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One. 2014;9:e96239.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 2008;13:1215–22.PubMedCrossRefGoogle Scholar
  185. 185.
    Zhang J, Du Y, Wu C, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186 signaling pathway. Oncol Rep. 2010;24:1217–23.PubMedGoogle Scholar
  186. 186.
    Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.PubMedCrossRefGoogle Scholar
  187. 187.
    Barth BM, Cabot MC, Kester M. Ceramide-based therapeutics for the treatment of cancer. Anti Cancer Agents Med Chem. 2011;11:911–9.CrossRefGoogle Scholar
  188. 188.
    Senchenkov A, Litvak DA, Cabot MC. Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst. 2001;93:347–57.PubMedCrossRefGoogle Scholar
  189. 189.
    Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002;277:26796–803.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Siskind LJ, Feinstein L, Yu TX, et al. Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J Biol Chem. 2008;283:6622–30.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    von Haefen C, Wieder T, Gillissen B, et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002;21:4009–19.CrossRefGoogle Scholar
  192. 192.
    Dumitru CA, Sandalcioglu IE, Wagner M, Weller M, Gulbins E. Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med. 2009;87:1123–32.PubMedCrossRefGoogle Scholar
  193. 193.
    Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer: pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.PubMedCrossRefGoogle Scholar
  194. 194.
    Liu F, Verin AD, Wang P, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24:711–9.PubMedCrossRefGoogle Scholar
  195. 195.
    Radin NS. The development of aggressive cancer: a possible role for sphingolipids. Cancer Investig. 2002;20:779–86.CrossRefGoogle Scholar
  196. 196.
    Pchejetski D, Golzio M, Bonhoure E, et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res. 2005;65:11667–75.PubMedCrossRefGoogle Scholar
  197. 197.
    Beckham TH, Lu P, Jones EE, et al. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther. 2013;344(1):167–78.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Jiang Y, DiVittore NA, Kaiser JM, et al. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther. 2011;12(7):574–85.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Sorli SC, Colié S, Albinet V, et al. The nonlysosomal β-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J. 2013;27(2):489–98.PubMedCrossRefGoogle Scholar
  200. 200.
    Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res. 2005;11(9):3465–74.PubMedCrossRefGoogle Scholar
  201. 201.
    Beljanski V, Lewis CS, Smith CD. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther. 2011;11(5):524–34.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Adan-Gokbulut A, Kartal-Yandim M, Iskender G, Baran Y. Novel agents targeting bioactive sphingolipids for the treatment of cancer. Curr Med Chem. 2013;20(1):108–22.PubMedCrossRefGoogle Scholar
  203. 203.
    Coward J, Ambrosini G, Musi E, Truman JP, Haimovitz-Friedman A, Allegood JC. Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy. 2009;5:184–93.PubMedCrossRefGoogle Scholar
  204. 204.
    Pyne S, Bittman R, Pyne NJ. Sphingosine kinase inhibitors and cancer: seeking the golden sword of Hercules. Cancer Res. 2011;71(21):6576–82.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Taouji S, Higa A, Delom F, et al. Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem. 2013;288(24):17190–201.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Huang WC, Tsai CC, Chen CL, et al. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 2011;25(10):3661–73.PubMedCrossRefGoogle Scholar
  207. 207.
    Nica AF, Tsao CC, Watt JC, et al. Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle. 2008;7(21):3362–70.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Camgoz A, Gencer EB, Ural AU, Baran Y. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leukemia Lymphoma. 2013;54:1279–87.PubMedCrossRefGoogle Scholar
  209. 209.
    Baran Y, Bielawski J, Gunduz U, Ogretmen B. Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol. 2011;137:1535–44.PubMedCrossRefGoogle Scholar
  210. 210.
    Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer. 2011;63(4):637–44.PubMedCrossRefGoogle Scholar
  211. 211.
    Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol. 2011;137(2):279–86.PubMedCrossRefGoogle Scholar
  212. 212.
    Camgoz A, Gencer EB, Ural AU, Avcu F, Baran Y. Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leukemia Lymphoma. 2011;52:1574–84.PubMedCrossRefGoogle Scholar
  213. 213.
    Gencer EB, Ural AU, Avcu F, Baran Y. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol. 2011;90:1265–75.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yağmur Kiraz
    • 1
    • 2
  • Aysun Adan
    • 1
  • Melis Kartal Yandim
    • 2
  • Yusuf Baran
    • 1
    • 2
  1. 1.Department of Molecular Biology and Genetics, Faculty of Life and Natural SciencesAbdullah Gül UniversityKayseriTurkey
  2. 2.Department of Molecular Biology and Geneticsİzmir Institute of TechnologyİzmirTurkey

Personalised recommendations