Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10685–10696 | Cite as

Enzymatically active cathepsin D sensitizes breast carcinoma cells to TRAIL

  • Blanka Jancekova
  • Eva Ondrouskova
  • Lucia Knopfova
  • Jan Smarda
  • Petr BenesEmail author
Original Article

Abstract

Cathepsin D (CD), a ubiquitously expressed lysosomal aspartic protease, is upregulated in human breast carcinoma and many other tumor types. CD has been repeatedly reported to act as key mediator of apoptosis induced by various chemotherapeutics. However, there is still controversy over the role of enzymatic/proteolytic versus protein-protein interaction activities of CD in apoptotic signaling. The elucidation of molecular mechanism responsible for the effect of CD in the chemotherapy-induced cell death is crucial for development of an appropriate strategy to target this protease in cancer treatment. Therefore, the objective of this study was to investigate the molecular mechanism behind the CD-mediated regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death. For this purpose, MDA-MB-231 breast carcinoma cells with an increased level of wt CD (CD) or mutant enzymatically inactive CD (ΔCD) were subjected to TRAIL and the frequency of apoptosis was determined. Our results show that CD facilitates the TRAIL-induced apoptosis of MDA-MB-231 breast cancer cells in enzymatic activity-dependent manner. Moreover, the importance of endosomal/lysosomal acidification in this process was documented. Analysis of the potential substrates specifically cleaved by CD during the TRAIL-induced apoptosis confirmed caspase-8 and Bid proteins as the CD targets. Moreover, in search for protein regulators of apoptosis that can be cleaved by CD at physiologically relevant pH, we identified the Bcl-2 protein as a suitable candidate. The modulatory role of CD in cell response to TRAIL was also confirmed in another breast cancer cell line SKBR3. These experiments identified the CD enzymatic activity as a new factor affecting sensitivity of breast cancer cells to TRAIL.

Keywords

Apoptosis Bcl-2 Breast cancer Caspases Cathepsin D TRAIL 

Notes

Acknowledgments

This work was funded by the European Regional Development Fund—projects FNUSA-ICRC (CZ.1.05/1.1.00/02.0123), CEB (CZ.1.07/2.3.00/20.0183), and by NT 13441-4/2012 (IGA, Ministry of Health of the Czech Republic), MEYS-NPS I-LO1413, MEYS-NPS II–LQ1605, and MH CZ–DRO (MMCI, 00209805) projects.

Compliance with ethical standards

Conflicts of interest

None.

Supplementary material

13277_2016_4958_MOESM1_ESM.doc (499 kb)
ESM 1 (DOC 499 kb)
13277_2016_4958_MOESM2_ESM.doc (182 kb)
ESM 2 (DOC 182 kb)

References

  1. 1.
    Benes P, Vetvicka V, Fusek M. Cathepsin D—many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68:12–28.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Margaryan NV, Kirschmann DA, Lipavsky A, Bailey CM, Hendrix MJC, Khalkhali-Ellis Z. New insights into cathepsin D in mammary tissue development and remodeling. Cancer Biol Ther. 2010;10:457–66.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Têtu B, Brisson J, Lapointe H, Wang CS, Bernard P, Blanchette C. Cathepsin D expression by cancer and stromal cells in breast cancer: an immunohistochemical study of 1348 cases. Breast Cancer Res Treat. 1999;55:137–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:966–78.PubMedGoogle Scholar
  5. 5.
    Garcia M, Derocq D, Pujol P, Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene. 1990;5:1809–14.PubMedGoogle Scholar
  6. 6.
    Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M. Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene. 2002;21:5127–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Knopfová L, Beneš P, Pekarčíková L, Hermanová M, Masařík M, Pernicová Z, et al. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer. 2012;11:15.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 1996;15:3861–70.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Wu GS, Saftig P, Peters C, El-Deiry WS. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene. 1998;16:2177–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE. Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther. 2005;4:733–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Démoz M, Castino R, Cesaro P, Baccino FM, Bonelli G, Isidoro C. Endosomal-lysosomal proteolysis mediates death signalling by TNFalpha, not by etoposide, in L929 fibrosarcoma cells: evidence for an active role of cathepsin D. Biol Chem. 2002;383:1237–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ. 2004;11:550–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Kågedal K, Johansson U, Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. Off Publ Fed Am Soc Exp Biol. 2001;15:1592–4.Google Scholar
  14. 14.
    Appelqvist H, Johansson A-C, Linderoth E, Johansson U, Antonsson B, Steinfeld R, et al. Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Ann Clin Lab Sci. 2012;42:231–42.PubMedGoogle Scholar
  15. 15.
    Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem. 2003;278:31401–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Carew JS, Espitia CM, Esquivel JA, Mahalingam D, Kelly KR, Reddy G, et al. Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011;286:6602–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Castino R, Pace D, Démoz M, Gargiulo M, Ariatta C, Raiteri E, et al. Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer J Int Cancer. 2002;97:775–9.CrossRefGoogle Scholar
  18. 18.
    Tardy C, Tyynelä J, Hasilik A, Levade T, Andrieu-Abadie N. Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death Differ. 2003;10:1090–100.CrossRefPubMedGoogle Scholar
  19. 19.
    Berchem G, Glondu M, Gleizes M, Brouillet J-P, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21:5951–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Hah Y-S, Noh HS, Ha JH, Ahn JS, Hahm JR, Cho HY, et al. Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells. Cancer Lett. 2012;323:208–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Marques C, Oliveira CSF, Alves S, Chaves SR, Coutinho OP, Côrte-Real M, et al. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis. 2013;4:e507.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Sagulenko V, Muth D, Sagulenko E, Paffhausen T, Schwab M, Westermann F. Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death. Carcinogenesis. 2008;29:1869–77.CrossRefPubMedGoogle Scholar
  23. 23.
    Beaujouin M, Baghdiguian S, Glondu-Lassis M, Berchem G, Liaudet-Coopman E. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene. 2006;25:1967–73.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Laurent-Matha V, Maruani-Herrmann S, Prébois C, Beaujouin M, Glondu M, Noël A, et al. Catalytically inactive human cathepsin D triggers fibroblast invasive growth. J Cell Biol. 2005;168:489–99.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Linares CI, Ferrín G, Aguilar-Melero P, González-Rubio S, Rodríguez-Perálvarez M, Sánchez-Aragó M, et al. Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells. Biochim Biophys Acta. 1853;2015:1182–94.Google Scholar
  26. 26.
    Masson O, Bach A-S, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, et al. Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie. 2010;92:1635–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Schestkowa O, Geisel D, Jacob R, Hasilik A. The catalytically inactive precursor of cathepsin D induces apoptosis in human fibroblasts and HeLa cells. J Cell Biochem. 2007;101:1558–66.CrossRefPubMedGoogle Scholar
  28. 28.
    Oussama Achour NB. Cathepsin D activity and selectivity in the acidic conditions of a tumor microenvironment: utilization in the development of a novel cathepsin D substrate for simultaneous cancer diagnosis and therapy. Biochimie. 2013.Google Scholar
  29. 29.
    Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell. 1999;4:563–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 2000;12:611–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999;104:155–62.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5:157–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang S. TRAIL: a sword for killing tumors. Curr Med Chem. 2010;17:3309–17.CrossRefPubMedGoogle Scholar
  34. 34.
    van Dijk M, Halpin-McCormick A, Sessler T, Samali A, Szegezdi E. Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis. 2013;4:e702.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem. 2007;282:28960–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Spes A, Sobotič B, Turk V, Turk B. Cysteine cathepsins are not critical for TRAIL- and CD95-induced apoptosis in several human cancer cell lines. Biol Chem. 2012;393:1417–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Ohri SS, Vashishta A, Proctor M, Fusek M, Vetvicka V. The propeptide of cathepsin D increases proliferation, invasion and metastasis of breast cancer cells. Int J Oncol. 2008;32:491–8.PubMedGoogle Scholar
  38. 38.
    Ross DD, Joneckis CC, Ordóñez JV, Sisk AM, Wu RK, Hamburger AW, et al. Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res. 1989;49:3776–82.PubMedGoogle Scholar
  39. 39.
    Repnik U, Česen MH, Turk B. The endolysosomal system in cell death and survival. Cold Spring Harb. Perspect. Biol. [Internet]. 2013 [cited 2013 Jun 14];5. Available from: http://cshperspectives.cshlp.org/content/5/1/a008755
  40. 40.
    Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2010.Google Scholar
  41. 41.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Horova V, Hradilova N, Jelinkova I, Koc M, Svadlenka J, Brazina J, et al. Inhibition of vacuolar ATPase attenuates the TRAIL-induced activation of caspase-8 and modulates the trafficking of TRAIL receptosomes. FEBS J. 2013;280:3436–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525.CrossRefPubMedGoogle Scholar
  44. 44.
    Melzer IM, Fernández SBM, Bösser S, Lohrig K, Lewandrowski U, Wolters D, et al. The Apaf-1-binding protein Aven is cleaved by cathepsin D to unleash its anti-apoptotic potential. Cell Death Differ. 2012;19:1435–45.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem. 2008;283:19140–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Johansson A-C, Steen H, Ollinger K, Roberg K. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ. 2003;10:1253–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Dean RT. The aspartic proteinase inhibitor pepstatin, enters mouse peritoneal macrophages by adsorptive pinocytosis. Cell Biol Int Rep. 1983;7:405.CrossRefPubMedGoogle Scholar
  48. 48.
    Yoshida H, Okamoto K, Iwamoto T, Sakai E, Kanaoka K, Hu J-P, et al. Pepstatin A, an aspartic proteinase inhibitor, suppresses RANKL-induced osteoclast differentiation. J Biochem (Tokyo). 2006;139:583–90.CrossRefGoogle Scholar
  49. 49.
    Okada M, Irie S, Sawada M, Urae R, Urae A, Iwata N, et al. Pepstatin A induces extracellular acidification distinct from aspartic protease inhibition in microglial cell lines. Glia. 2003;43:167–74.CrossRefPubMedGoogle Scholar
  50. 50.
    Conus S, Pop C, Snipas SJ, Salvesen GS, Simon H-U. Cathepsin D primes caspase-8 activation by multiple intra-chain proteolysis. J Biol Chem. 2012;287:21142–51.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Padrón-Barthe L, Courta J, Leprêtre C, Nagbou A, Torriglia A. Leukocyte elastase inhibitor, the precursor of L-DNase II, inhibits apoptosis by interfering with caspase-8 activation. Biochim Biophys Acta. 2008;1783:1755–66.CrossRefPubMedGoogle Scholar
  52. 52.
    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.CrossRefPubMedGoogle Scholar
  53. 53.
    Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2:318–25.CrossRefPubMedGoogle Scholar
  54. 54.
    Nilsson C, Johansson U, Johansson A-C, Kågedal K, Ollinger K. Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis Int J Program Cell Death. 2006;11:1149–59.CrossRefGoogle Scholar
  55. 55.
    Park JR, Hockenbery DM. BCL-2, a novel regulator of apoptosis. J Cell Biochem. 1996;60:12–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Nencioni A, Wille L, Dal Bello G, Boy D, Cirmena G, Wesselborg S, et al. Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:4259–65.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Blanka Jancekova
    • 1
    • 2
  • Eva Ondrouskova
    • 1
    • 3
  • Lucia Knopfova
    • 1
    • 2
  • Jan Smarda
    • 1
  • Petr Benes
    • 1
    • 2
    Email author
  1. 1.Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne’sUniversity Hospital BrnoBrnoCzech Republic
  3. 3.Masaryk Memorial Cancer InstituteRECAMOBrnoCzech Republic

Personalised recommendations