Tumor Biology

, Volume 37, Issue 8, pp 10499–10506 | Cite as

MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1

  • Di-di Wu
  • Xue-song Li
  • Xiao-Na Meng
  • Jing Yan
  • Zhi-hong Zong
Original Article


Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3′-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.


ABCB1 miR-873 Drug resistance Cisplatin Ovarian cancer 



This work was supported by Liaoning Science and Technology Grant (2013021077) and the Natural Scientific Foundation of China (No. 81472502).

Compliance with ethical standards

Conflicts of interest


Authors’ contributions

Z-H Z conceived the study and analyzed interpretation. D-D W, X-S L, X-N M, and JY carried out the experiments and analyzed the data. Z-H Z wrote the first and final draft of the manuscript. All authors read and approved the final manuscript.

Supplementary material

13277_2016_4944_MOESM1_ESM.doc (31 kb)
Supplementary Table 1 Primers for RT-PCR. (DOC 31 kb)


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Bristow RE, Chang J, Ziogas A, Anton-Culver H. Adherence to treatment guidelines for ovarian cancer as a measure of quality care. Obstet Gynecol. 2013;121(6):1226–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK, Kakar SS. MicroRNA signature of cisplatin resistant vs. cisplatin sensitive ovarian cancer cell lines. J Ovarian Res. 2011;4:17.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen S, Jiao JW, Sun KX, Zong ZH, Zhao Y. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des Devel Ther. 2015;9:5225–35.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Haenisch S, Werk AN, Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol. 2013;77(4):587–596.5.CrossRefGoogle Scholar
  6. 6.
    Cui J, Yang Y, Li H, Leng Y, Qian K, Huang Q, et al. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene. 2015;34(30):4018.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang RJ, Li JW, Bao BH, Wu HC, Du ZH, Su JL, et al. MicroRNA-873 (miRNA-873) inhibits glioblastoma tumorigenesis and metastasis by suppressing the expression of IGF2BP1. J Biol Chem. 2015;290(14):8938–48.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han S, et al. miR-873 acts as a novel sensitizer of glioma cells to cisplatin by targeting Bcl-2. Int J Oncol. 2015;47(4):1603–11.PubMedGoogle Scholar
  9. 9.
    Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O’Leary JJ, et al. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One. 2012;7(7):e40717.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Deng H, Lv L, Li Y, Zhang C, Meng F, Pu Y, et al. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway. Mol Cancer. 2014;13:234.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhu X, Wu L, Yao J, Jiang H, Wang Q, Yang Z, et al. MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma. PLoS One. 2015;10(4):e0124266.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu Y, Xia X, Zhou M, Liu X. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice. Exp Ther Med. 2015;9(6):2180–4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Qiu JG, Zhang YJ, Li Y, Zhao JM, Zhang WJ, Jiang QW, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6(17):15494–509.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vilanova-Costa CA, Porto HK, Pereira LC, Carvalho BP, Dos Santos WB, Silveira-Lacerda EP. MDR1 and cytochrome P450 gene-expression profiles as markers of chemosensitivity in human chronic myelogenous leukemia cells treated with cisplatin and Ru(III) metallocomplexes. Biol Trace Elem Res. 2015;163(1-2):39–47.CrossRefPubMedGoogle Scholar
  15. 15.
    Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/beta-catenin pathway. Oncotarget. 2014;5(23):12273–90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou X, Chen R, Yu Z, Li R, Li J, Zhao X, et al. Dichloroacetate restores drug sensitivity in paclitaxel-resistant cells by inducing citric acid accumulation. Mol Cancer. 2015;14:63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang X, Pagé M. P-glycoprotein expression in ovarian cancer cell line following treatment with cisplatin. Oncol Res. 1995;7(12):619–24.PubMedGoogle Scholar
  18. 18.
    Yang LY, Trujillo JM, Siciliano MJ, Kido Y, Siddik ZH, Su YZ. Distinct P-glycoprotein expression in two subclones simultaneously selected from a human colon carcinoma cell line by cis-diamminedichloroplatinum (II). Int J Cancer. 1993;53(3):478–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu H, Choi SM, An CS, Min YD, Kim KC, Kim KJ, et al. Concentration-dependent collateral sensitivity of cisplatin-resistant gastric cancer cell sublines. Biochem Biophys Res Commun. 2005;11:618–22.CrossRefGoogle Scholar
  20. 20.
    Zhao M, Lei C, Yang Y, Bu X, Ma H, Gong H, et al. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PLoS One. 2015;10(7):e0131429.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res. 2005;11(11):4136–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Gisel A, Valvano M, El Idrissi IG, Nardulli P, Azzariti A, Carrieri A, et al. miRNAs for the detection of multidrug resistance: overview and perspectives. Molecules. 2014;19(5):5611–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7-8):802–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Cui H, Zhang AJ, Chen M, Liu JJ. ABC Transporter Inhibitors in Reversing Multidrug Resistance to Chemotherapy. Curr Drug Targets. 2015;16(12):1356–71.Google Scholar
  26. 26.
    Hamaguchi K, Godwin AK, Yakushiji M, O’Dwyer PJ, Ozols RF, Hamilton TC. Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res. 1993;53(21):5225–32.PubMedGoogle Scholar
  27. 27.
    Vallo S, Michaelis M, Rothweiler F, Bartsch G, Gust KM, Limbart DM, et al. Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics. Transl Oncol. 2015;8(3):210–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW, et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med. 2011;15:2164–75.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu X, Li Y, Shen H, Li H, Long L, Hui L, et al. MiR-137 restoration sensitizes multidrug-resistant mcf-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochim Biophys Sin (Shanghai). 2013;45(2):80–6.CrossRefGoogle Scholar
  30. 30.
    Cui L, Zhou H, Zhao H, Zhou Y, Xu R, Xu X, et al. MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer. 2012;12:546.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dai F, Zhang Y, Zhu X, Shan N, Chen Y. The anti-chemoresistant effect and mechanism of MUC1 aptamer-miR-29b chimera in ovarian cancer. Gynecol Oncol. 2013;131(2):451–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu X, Bhayani MK, Dodge CT, Nicoloso MS, Chen Y, Yan X, et al. Coordinated targeting of the EGFR signaling axis by microRNA-27a*. Oncotarget. 2013;4(9):1388–98.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Di-di Wu
    • 1
  • Xue-song Li
    • 1
  • Xiao-Na Meng
    • 1
  • Jing Yan
    • 1
  • Zhi-hong Zong
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, College of Basic MedicineChina Medical UniversityShenyangChina

Personalised recommendations