Tumor Biology

, Volume 37, Issue 7, pp 9121–9129 | Cite as

Evaluation of 188Re-labeled NGR–VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts

  • Wenhui Ma
  • Yahui Shao
  • Weidong Yang
  • Guiyu Li
  • Yingqi Zhang
  • Mingru Zhang
  • Changjing Zuo
  • Kai ChenEmail author
  • Jing WangEmail author
Original Article


Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine–glycine–arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR–VEGI fusion protein was prepared and labeled with 188Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that 188Re-NGR–VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of 188Re-NGR–VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR–VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of 188Re-NGR–VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of 188Re-NGR–VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that 188Re-NGR–VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy.


Vascular endothelial growth inhibitor CD13 Re-188 Imaging Therapy 



We thank Professor Liwen Li, Xiaochang Xue, and Entai Hou from Northwest University and Hongdie Jiang from the Second Military Medical University for their technical assistance. This work was supported by the Key Program of National Natural Science Foundation of China (Grant No. 81230033), the Major State Basic Research Development Program (Grant No. 2011CB707704), the Major Instrument of National Natural Science Foundation Research Project (Grant No. 81227901), the Major Program of National Natural Science Foundation of China (Grant No. 81090270), the General Program of National Natural Science Foundation of China (Grant No. 81371594), the International Cooperation Program of Xijing Hospital (Grant No. XJZT13G02), and the USC Department of Radiology.

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_4810_MOESM1_ESM.doc (92 kb)
Figure S1 (DOC 92 kb)


  1. 1.
    Haridas V, Shrivastava A, Su J, Yu GL, Ni J, Liu D, et al. VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene. 1999;18(47):6496–504.CrossRefPubMedGoogle Scholar
  2. 2.
    Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204(1-2):35–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang N, Sanders AJ, Ye L, Jiang WG. Vascular endothelial growth inhibitor in human cancer. Int J Mol Med. 2009;24(1):3–8.PubMedGoogle Scholar
  4. 4.
    Metheny-Barlow LJ, Li LY. Vascular endothelial growth inhibitor (VEGI), an endogenous negative regulator of angiogenesis. Semin Ophthalmol. 2006;21(1):49–58.CrossRefPubMedGoogle Scholar
  5. 5.
    Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, et al. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J. 2002;16(7):742–4.PubMedGoogle Scholar
  6. 6.
    Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol. 2004;68(6):1017–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23(5):317–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, et al. Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res. 2001;89(12):1161–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Parr C, Gan CH, Watkins G, Jiang WG. Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis. 2006;9(2):73–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen K, Chen X. Design and development of molecular imaging probes. Curr Top Med Chem. 2010;10(12):1227–36.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sethi G, Sung B, Aggarwal BB. Therapeutic potential of VEGI/TL1A in autoimmunity and cancer. Adv Exp Med Biol. 2009;647:207–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Duan L, Yang G, Zhang R, Feng L, Xu C. Advancement in the research on vascular endothelial growth inhibitor (VEGI). Target Oncol. 2012;7(1):87–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97(3):652–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Huang R, Wang M, Zhu Y, Conti PS, Chen K. Development of PET probes for cancer imaging. Curr Top Med Chem. 2015;15(8):795–819.CrossRefPubMedGoogle Scholar
  16. 16.
    Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids. 2014;46(10):2355–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. 68Ga-labeled cyclic NGR peptide for MicroPET imaging of CD13 receptor expression. Molecules. 2014;19(8):11600–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11(11):3938–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, et al. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm. 2013;10(1):417–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Faintuch BL, Oliveira EA, Targino RC, Moro AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot. 2014;86:41–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, et al. 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids. 2013;44(5):1337–45.Google Scholar
  22. 22.
    Li G, Xing Y, Wang J, Conti PS, Chen K. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids. 2014;46(6):1547–56.CrossRefPubMedGoogle Scholar
  23. 23.
    Persigehl T, Ring J, Bremer C, Heindel W, Holtmeier R, Stypmann J, et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis. 2014;17(1):235–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu F, Li M, Liu C, Liu Y, Liang Y, Wang F, et al. Tumor-specific delivery and therapy by double-targeted DTX-CMCS-PEG-NGR conjugates. Pharm Res. 2014;31(2):475–88.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Y, Chen J, Lin AH, Fang Y. Advance in studies on NGR peptide modified liposome and its anti-tumor performance. Zhongguo Zhong Yao Za Zhi. 2013;38(13):2041–5.PubMedGoogle Scholar
  26. 26.
    Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, et al. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002;62(3):867–74.PubMedGoogle Scholar
  27. 27.
    Argyrou M, Valassi A, Andreou M, Lyra M. Rhenium-188 production in hospitals, by W-188/Re-188 generator, for easy use in radionuclide therapy. Int J Mol Imaging. 2013;2013:290750.Google Scholar
  28. 28.
    Hsieh BT, Hsieh JF, Tsai SC, Lin WY, Huang HT, Ting G, et al. Rhenium-188-Labeled DTPA: a new radiopharmaceutical for intravascular radiation therapy. Nucl Med Biol. 1999;26(8):967–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Eary JF, Durack L, Williams D, Vanderheyden JL. Considerations for imaging Re-188 and Re-186 isotopes. Clin Nucl Med. 1990;15(12):911–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Jansen DR, Krijger GC, Kolar ZI, Zonnenberg BA, Zeevaart JR. Targeted radiotherapy of bone malignancies. Curr Drug Discov Technol. 2010;7(4):233–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Werner M, Scheinert D, Henn M, Scheinert S, Braunlich S, Bausback Y, et al. Endovascular brachytherapy using liquid Beta-emitting Rhenium-188 for the treatment of long-segment femoropopliteal in-stent stenosis. J Endovasc Ther. 2012;19(4):467–75.Google Scholar
  32. 32.
    Leissner GG, Wengenmair H, Sciuk J, Woelfle KD, Winterstein A, Weinrich K, et al. Endovascular brachytherapy (EVBT) with Rhenium-188 for restenosis prophylaxis after angioplasty of infrainguinal lesions: early experience. Röfo. 2011;183(8):735–42.PubMedGoogle Scholar
  33. 33.
    Selcuk NA, Onsel C, Ozturk S, Gurmen T, Gulbaran M, Sager S, et al. Intravascular radiation therapy with a Re-188 liquid-filled balloon in patients with in-stent restenosis. Nucl Med Commun. 2010;31(8):746–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Torres-Garcia E, Ferro-Flores G, Arteaga de Murphy C, Correa-Gonzalez L, Pichardo-Romero PA. Biokinetics and dosimetry of 188Re-anti-CD20 in patients with non-Hodgkin’s lymphoma: preliminary experience. Arch Med Res. 2008;39(1):100–9.Google Scholar
  35. 35.
    Ferro-Flores G, Torres-Garcia E, Garcia-Pedroza L, Arteaga de Murphy C, Pedraza-Lopez M, Garnica-Garza H. An efficient, reproducible and fast preparation of 188Re-anti-CD20 for the treatment of non-Hodgkin’s lymphoma. Nucl Med Commun. 2005;26(9):793–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Kairemo KJ. Radioimmunotherapy of solid cancers: a review. Acta Oncol. 1996;35(3):343–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang HY, Lin WY, Chen MC, Lin T, Chao CH, Hsu FN, et al. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: a possible radioimmunotherapy to prostate carcinoma. Int J Radiat Biol. 2013;89(5):346–55.CrossRefPubMedGoogle Scholar
  38. 38.
    Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine. 2011;6:3077–85.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ma W, Li G, Wang J, Yang W, Zhang Y, Conti PS, et al. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Amino Acids. 2014;46(12):2721–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu G, Dou S, He J, Yin D, Gupta S, Zhang S, et al. Radiolabeling of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot. 2006;64(9):971–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xing Y, Zhao J, Shi X, Conti PS, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotech. 2014;2(2):1016.Google Scholar
  42. 42.
    Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4(3):290–306.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhao R, Yang W, Wang Z, Li G, Qin W, Wang J. Treatment of transplanted tumor of lung adenocarcinoma A549 transfected by human somatostatin receptor subtype 2 (hsstr2) gene with 188Re-RC-160. Nucl Med Biol. 2010;37(8):977–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Hou W, Medynski D, Wu S, Lin X, Li LY. VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res. 2005;11(15):5595–602.CrossRefPubMedGoogle Scholar
  45. 45.
    Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S, et al. Radiosynovectomy using Yttrium-90, Phosphorus-32 or Rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med. 2011;25(5):317–23.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Wenhui Ma
    • 1
    • 5
  • Yahui Shao
    • 1
    • 2
  • Weidong Yang
    • 1
  • Guiyu Li
    • 1
  • Yingqi Zhang
    • 3
  • Mingru Zhang
    • 1
  • Changjing Zuo
    • 4
  • Kai Chen
    • 5
    Email author
  • Jing Wang
    • 1
    Email author
  1. 1.Department of Nuclear Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  2. 2.Department of Nuclear MedicineGeneral Hospital of Jinan Military RegionJinanChina
  3. 3.The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of PharmacyThe Fourth Military Medical UniversityXi’anChina
  4. 4.Department of Nuclear Medicine, Changhai HospitalThe Second Military Medical UniversityShanghaiChina
  5. 5.Molecular Imaging Center, Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations