Tumor Biology

, Volume 37, Issue 3, pp 2805–2810 | Cite as

Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut

  • Arif Bashir
  • Abid Yousuf Miskeen
  • Younis Mohammad Hazari
  • Syed Asrafuzzaman
  • Khalid Majid Fazili
Review

Abstract

Fusobacterium nucleatum is an identified proinflammatory autochthonous bacterium implicated in human colorectal cancer. It is also abundantly found in patients suffering from chronic gut inflammation (inflammatory bowel disease), consequently contributing to the pathogenesis of colorectal cancer. Majority of the studies have reported that colorectal tumors/colorectal adenocarcinomas are highly enriched with F. nucleatum compared to noninvolved adjacent colonic tissue. During the course of multistep development of colorectal cancer, tumors have evolved many mechanisms to resist the antitumor immune response. One of such favorite ploy is providing access to pathogenic bacteria, especially F. nucleatum in the colorectal tumor microenvironment, wherein both (colorectal tumors and F. nucleatum) exert profound effect on each other, consequently attracting tumor-permissive myeloid-derived suppressor cells, suppressing cytotoxic CD8+ T cells and inhibiting NK cell-mediated cancer cell killing. In this review, we have primarily focused on how this bug modulates the immune response, consequently rendering the antitumor immune cells inactive.

Keywords

Fusobacterium nucleatum (F. nucleatumInflammatory bowel disease (IBD) Crohn’s disease (CD) Ulcerative colitis (UC) T cell immunoglobulin and ITIM (TIGIT) domain 

Notes

Acknowledgments

The authors gratefully acknowledge the support provided by University of Kashmir, Srinagar. The contributions made by Mudassir Habib, Samirul Bashir, and Nazia Hilal from the Department of Biotechnology, University of Kashmir are acknowledged.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Kostic AD et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rubinstein MR et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tahara T et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74(5):1311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bashir A et al. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur J Cancer Prev. 2015;24(5):373–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Tjalsma H et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013;346:f432.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang T et al. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med. 2013;19(12):714–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10(6):639–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Couturier-Maillard A et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jostins L et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gevers D et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014;15(3):382–92.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99. doi: 10.1053/j.gastro.2014.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Minot S et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25. doi: 10.1101/gr.122705.111.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146(6):1459–69. doi: 10.1053/j.gastro.2014.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157(1):142–50.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29(1):85–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Sansone P, Bromberg J. Environment, inflammation, and cancer. Curr Opin Genet Dev. 2011;21(1):80–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu H, Redline RW, Han YW. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol. 2007;179(4):2501–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Swidsinski A et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60(1):34–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Irrazabal T et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309–20.CrossRefPubMedGoogle Scholar
  23. 23.
    McCoy AN et al. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8(1):e53653.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dharmani P et al. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011;79(7):2597–607.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Castellarin M et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kostic AD et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marchesi JR et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6(5):e20447. doi: 10.1371/journal.pone.0020447.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Strauss J et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Kostic AD et al. Microbes and inflammation in colorectal cancer. Cancer Immunol Res. 2013;1(3):150–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mima K et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moretta L et al. Human natural killer cells: origin, clonality, specificity, and receptors. Adv Immunol. 1994;55:341–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Levin AM et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529–33.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Koch J et al. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34(4):182–91. doi: 10.1016/j.it.2013.01.003.CrossRefPubMedGoogle Scholar
  35. 35.
    Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci. 2012;69(23):3911–20. doi: 10.1007/s00018-012-1001-x.CrossRefPubMedGoogle Scholar
  36. 36.
    Gur C et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. doi: 10.1016/j.immuni.2015.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39(1):38–48.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    van den Boorn JG, Hartmann G. Turning tumors into vaccines: co-opting the innate immune system. Immunity. 2013;39(1):27–37.CrossRefPubMedGoogle Scholar
  41. 41.
    Crespo J et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21. doi: 10.1016/j.coi.2012.12.003.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60. doi: 10.1016/j.it.2013.10.001.CrossRefPubMedGoogle Scholar
  43. 43.
    Johnston RJ et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. doi: 10.1016/j.ccell.2014.10.018.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Arif Bashir
    • 1
  • Abid Yousuf Miskeen
    • 2
  • Younis Mohammad Hazari
    • 1
  • Syed Asrafuzzaman
    • 3
  • Khalid Majid Fazili
    • 1
  1. 1.Department of BiotechnologyUniversity of KashmirSrinagarIndia
  2. 2.Department of Human GeneticsPunjabi UniversityPatialaIndia
  3. 3.Department of ZoologyNorth Orissa UniversityOrissaIndia

Personalised recommendations