Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut
- 995 Downloads
- 13 Citations
Abstract
Fusobacterium nucleatum is an identified proinflammatory autochthonous bacterium implicated in human colorectal cancer. It is also abundantly found in patients suffering from chronic gut inflammation (inflammatory bowel disease), consequently contributing to the pathogenesis of colorectal cancer. Majority of the studies have reported that colorectal tumors/colorectal adenocarcinomas are highly enriched with F. nucleatum compared to noninvolved adjacent colonic tissue. During the course of multistep development of colorectal cancer, tumors have evolved many mechanisms to resist the antitumor immune response. One of such favorite ploy is providing access to pathogenic bacteria, especially F. nucleatum in the colorectal tumor microenvironment, wherein both (colorectal tumors and F. nucleatum) exert profound effect on each other, consequently attracting tumor-permissive myeloid-derived suppressor cells, suppressing cytotoxic CD8+ T cells and inhibiting NK cell-mediated cancer cell killing. In this review, we have primarily focused on how this bug modulates the immune response, consequently rendering the antitumor immune cells inactive.
Keywords
Fusobacterium nucleatum (F. nucleatum) Inflammatory bowel disease (IBD) Crohn’s disease (CD) Ulcerative colitis (UC) T cell immunoglobulin and ITIM (TIGIT) domainNotes
Acknowledgments
The authors gratefully acknowledge the support provided by University of Kashmir, Srinagar. The contributions made by Mudassir Habib, Samirul Bashir, and Nazia Hilal from the Department of Biotechnology, University of Kashmir are acknowledged.
Compliance with ethical standards
Conflicts of interest
None
References
- 1.Kostic AD et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Rubinstein MR et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Tahara T et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74(5):1311–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Bashir A et al. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur J Cancer Prev. 2015;24(5):373–85.CrossRefPubMedGoogle Scholar
- 6.Tjalsma H et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.CrossRefPubMedGoogle Scholar
- 7.Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013;346:f432.CrossRefPubMedGoogle Scholar
- 8.Yang T et al. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med. 2013;19(12):714–25.CrossRefPubMedGoogle Scholar
- 9.Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10(6):639–45.CrossRefPubMedGoogle Scholar
- 10.Couturier-Maillard A et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentralGoogle Scholar
- 11.Jostins L et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Gevers D et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014;15(3):382–92.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99. doi: 10.1053/j.gastro.2014.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Minot S et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25. doi: 10.1101/gr.122705.111.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146(6):1459–69. doi: 10.1053/j.gastro.2014.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157(1):142–50.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29(1):85–91.CrossRefPubMedGoogle Scholar
- 19.Sansone P, Bromberg J. Environment, inflammation, and cancer. Curr Opin Genet Dev. 2011;21(1):80–5.CrossRefPubMedGoogle Scholar
- 20.Liu H, Redline RW, Han YW. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol. 2007;179(4):2501–8.CrossRefPubMedGoogle Scholar
- 21.Swidsinski A et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60(1):34–40.CrossRefPubMedGoogle Scholar
- 22.Irrazabal T et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309–20.CrossRefPubMedGoogle Scholar
- 23.McCoy AN et al. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8(1):e53653.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Dharmani P et al. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011;79(7):2597–607.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Castellarin M et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Kostic AD et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Marchesi JR et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6(5):e20447. doi: 10.1371/journal.pone.0020447.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Strauss J et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.CrossRefPubMedGoogle Scholar
- 29.Kostic AD et al. Microbes and inflammation in colorectal cancer. Cancer Immunol Res. 2013;1(3):150–7.CrossRefPubMedGoogle Scholar
- 30.Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Mima K et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Moretta L et al. Human natural killer cells: origin, clonality, specificity, and receptors. Adv Immunol. 1994;55:341–80.CrossRefPubMedGoogle Scholar
- 33.Levin AM et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529–33.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Koch J et al. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34(4):182–91. doi: 10.1016/j.it.2013.01.003.CrossRefPubMedGoogle Scholar
- 35.Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci. 2012;69(23):3911–20. doi: 10.1007/s00018-012-1001-x.CrossRefPubMedGoogle Scholar
- 36.Gur C et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. doi: 10.1016/j.immuni.2015.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.CrossRefPubMedGoogle Scholar
- 38.Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60.CrossRefPubMedGoogle Scholar
- 39.Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39(1):38–48.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.van den Boorn JG, Hartmann G. Turning tumors into vaccines: co-opting the innate immune system. Immunity. 2013;39(1):27–37.CrossRefPubMedGoogle Scholar
- 41.Crespo J et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21. doi: 10.1016/j.coi.2012.12.003.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60. doi: 10.1016/j.it.2013.10.001.CrossRefPubMedGoogle Scholar
- 43.Johnston RJ et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. doi: 10.1016/j.ccell.2014.10.018.CrossRefPubMedGoogle Scholar