Tumor Biology

, Volume 37, Issue 6, pp 8057–8066 | Cite as

A variant at a potentially functional microRNA-binding site in BRIP1 was associated with risk of squamous cell carcinoma of the head and neck

  • Hongliang Liu
  • Fengqin Gao
  • Kristina R. Dahlstrom
  • Guojun Li
  • Erich M. Sturgis
  • Jose P. Zevallos
  • Qingyi Wei
  • Zhensheng Liu
Original Article


DNA double-strand breaks (DSBs) are one of the most serious forms of DNA damage to the cell, causing genomic instability and ultimately carcinogenesis. In this study, we hypothesized that single nucleotide polymorphisms (SNPs) at the micro RNA (miRNA)-binding sites of DSB repair genes may influence cancer risk by dysregulating target gene expression. To test our hypothesis, we firstly performed functional prediction for common SNPs in DSB genes and found 12 potentially functional SNPs located at the miRNA-binding sites. We then investigated their associations with risk of squamous cell carcinoma of the head and neck (SCCHN) in 1087 patients and 1090 cancer-free controls in a non-Hispanic white population. As a result, SNP rs7213430 in BRIP1 was found to be significantly associated with cancer risk (Ptrend = 0.021). Compared with the AA homozygotes, the G allele carriers had an increased risk of SCCHN (adjusted OR 1.16, 95 % CI 1.02–1.31). Marginal significance was found for another SNP rs15869 in BRCA2 (P = 0.053). Further, functional analyses showed that SNP rs7213430 is within the miR-101 seed-binding region, and the variant G allele could lead to significantly lower luciferase activity and BRIP1 mRNA expression, compared to the A allele with the presence of miR-101. Our results suggested that SNP rs7213430 in the 3′-UTR of BRIP1 might contribute to SCCHN susceptibility by affecting the binding activity of miR-101 and resulting in a decreased BRIP1 expression. Additional larger population and functional studies are warranted to confirm our findings.


DNA double strands break MicroRNA Genetic susceptibility Head and neck cancer Polymorphism 



DNA double-strand break


Single nucleotide polymorphism


Squamous cell carcinoma of the head and neck


Peripheral blood mononuclear cells


Odds ratio


Confidence interval

Supplementary material

13277_2015_4682_MOESM1_ESM.docx (18 kb)
Supplementary Table 1(DOCX 17 kb)


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Lewin F, Norell SE, Johansson H, Gustavsson P, Wennerberg J, Biorklund A, et al. Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck: A population-based case-referent study in sweden. Cancer. 1998;82:1367–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48:3282–7.PubMedGoogle Scholar
  6. 6.
    Gillison ML, D’Souza G, Westra W, Sugar E, Xiao W, Begum S, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst. 2008;100:407–20.CrossRefPubMedGoogle Scholar
  7. 7.
    De Petrini M, Ritta M, Schena M, Chiusa L, Campisi P, Giordano C, et al. Head and neck squamous cell carcinoma: Role of the human papillomavirus in tumour progression. New Microbiol. 2006;29:25–33.PubMedGoogle Scholar
  8. 8.
    Lee YC, Boffetta P, Sturgis EM, Wei Q, Zhang ZF, Muscat J, et al. Involuntary smoking and head and neck cancer risk: Pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol Biomarkers Prev. 2008;17:1974-1981.Google Scholar
  9. 9.
    Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541-550.Google Scholar
  10. 10.
    Hu H, Gatti RA. Micrornas: new players in the DNA damage response. J Mol Cell Biol. 2011;3:151–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wouters MD, van Gent DC, Hoeijmakers JH, Pothof J. Micrornas, the DNA damage response and cancer. Mutat Res. 2011;717:54–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Taniguchi T. Micrornas and DNA damage response: implications for cancer therapy. Cell Cycle. 2013;12:32–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, et al. Aberrant allele frequencies of the snps located in microrna target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35:4535–41.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Z, Wei S, Ma H, Zhao M, Myers JN, Weber RS, et al. A functional variant at the mir-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2011;32:1668-1674.Google Scholar
  15. 15.
    Guan X, Liu Z, Liu H, Yu H, Wang LE, Sturgis EM, et al. A functional variant at the mir-885-5p binding site of casp3 confers risk of both index and second primary malignancies in patients with head and neck cancer. FASEB J : Off Publ Fed Am Soc Exp Biol. 2013;27:1404–12.CrossRefGoogle Scholar
  16. 16.
    Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-rna-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29:579–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu Z, Taylor JA. Snpinfo: Integrating gwas and candidate gene information into functional snp selection for genetic association studies. Nucleic Acids Res. 2009;37:W600–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. Diana-microt web server: elucidating microrna functions through target prediction. Nucleic Acids Res. 2009;37:W273–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microrna/target duplexes. RNA. 2004;10:1507–17.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xie J, Litman R, Wang S, Peng M, Guillemette S, Rooney T, et al. Targeting the fancj-brca1 interaction promotes a switch from recombination to poleta-dependent bypass. Oncogene. 2010;29:2499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microrna targets. Cell. 2003;115:787–98.CrossRefPubMedGoogle Scholar
  22. 22.
    Deveci M, Catalyurek UV, Toland AE. Mrsnp: Software to detect snp effects on microrna binding. BMC Bioinformatics. 2014;15:73.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. Bach1, a novel helicase-like protein, interacts directly with brca1 and contributes to its DNA repair function. Cell. 2001;105:149–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, et al. The DNA helicase brip1 is defective in fanconi anemia complementation group j. Nat Genet. 2005;37:934–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu X, Chini CC, He M, Mer G, Chen J. The brct domain is a phospho-protein binding domain. Science. 2003;302:639–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Peng M, Litman R, Jin Z, Fong G, Cantor SB. Bach1 is a DNA repair protein supporting brca1 damage response. Oncogene. 2006;25:2245–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B, et al. Oncogenic ras regulates brip1 expression to induce dissociation of brca1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell. 2011;21:1077–91.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kote-Jarai Z, Jugurnauth S, Mulholland S, Leongamornlert DA, Guy M, Edwards S, et al. A recurrent truncating germline mutation in the brip1/fancj gene and susceptibility to prostate cancer. Br J Cancer. 2009;100:426–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wong MW, Nordfors C, Mossman D, Pecenpetelovska G, Avery-Kiejda KA, Talseth-Palmer B, et al. Brip1, palb2, and rad51c mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat. 2011;127:853–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Besenbacher S, et al. Mutations in brip1 confer high risk of ovarian cancer. Nat Genet. 2011;43:1104–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Ren LP, Xian YS, Diao DM, Chen Y, Guo Q, Dang CX. Further evidence for the contribution of the brca1-interacting protein-terminal helicase 1 (brip1) gene in breast cancer susceptibility. Genet Mol Res : GMR. 2013;12:5793–801.CrossRefPubMedGoogle Scholar
  32. 32.
    Ma XD, Cai GQ, Zou W, Huang YH, Zhang JR, Wang DT, et al. First evidence for the contribution of the genetic variations of brca1-interacting protein 1 (brip1) to the genetic susceptibility of cervical cancer. Gene. 2013;524:208–13.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Hongliang Liu
    • 1
    • 2
  • Fengqin Gao
    • 1
    • 2
  • Kristina R. Dahlstrom
    • 3
  • Guojun Li
    • 3
    • 4
  • Erich M. Sturgis
    • 3
    • 4
  • Jose P. Zevallos
    • 5
    • 6
  • Qingyi Wei
    • 1
    • 2
  • Zhensheng Liu
    • 1
    • 2
  1. 1.Duke Cancer InstituteDuke University Medical CenterDurhamUSA
  2. 2.Department of MedicineDuke University School of MedicineDurhamUSA
  3. 3.Departments of Head and Neck SurgeryThe University of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Department of EpidemiologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA
  5. 5.Department of Otolaryngology/Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillUSA
  6. 6.Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations