Tumor Biology

, Volume 37, Issue 6, pp 7719–7727 | Cite as

MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response

  • Andrej Besse
  • Jiri Sana
  • Radek Lakomy
  • Leos Kren
  • Pavel Fadrus
  • Martin Smrcka
  • Marketa Hermanova
  • Radim Jancalek
  • Stefan Reguli
  • Radim Lipina
  • Marek Svoboda
  • Pavel Slampa
  • Ondrej SlabyEmail author
Original Article


Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with an extremely low median survival rate of 12–15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to the treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain-specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and miR-338-5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased cell proliferation, increased cell cycle arrest, and apoptosis in comparison to irradiation-only cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, and ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation, and cell cycle regulation. To our knowledge, this is the first study to describe the role of miR-338-5p in GBM and its potential to improve the sensitivity of GBM to radiation.


Glioblastoma multiforme GBM Radiation resistance miRNA miRNA338-5p 



This work was supported by grants NT13514-4/2012 and NT13581-4/2012 of the Czech Ministry of Health, the project “CEITEC–Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068), and the project MZ CR–RVO (MOU, 00209805).

Compliance with ethical standards

Informed consent was obtained from each patient before the treatment.

Conflicts of interest


Supplementary material

13277_2015_4654_MOESM1_ESM.docx (179 kb)
ESM 1 (DOCX 179 kb)


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  3. 3.
    Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75:4416–28.CrossRefPubMedGoogle Scholar
  4. 4.
    Niyazi M, Siefert A, Schwarz SB, Ganswindt U, Kreth FW, Tonn JC, et al. Therapeutic options for recurrent malignant glioma. Radiother Oncol. 2011;98:1–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, et al. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer. 2008;8:304.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Walbert T, Mikkelsen T. Recurrent high-grade glioma: a diagnostic and therapeutic challenge. Expert Rev Neurother. 2011;11:509–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Squatrito M, Holland EC. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance. Cancer Res. 2011;71:5945–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig. 2012;30:48–56.CrossRefGoogle Scholar
  9. 9.
    Li WB, Ma MW, Dong LJ, Wang F, Chen LX, Li XR. Microrna-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther. 2011;12:477–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Lim YC, Roberts TL, Day BW, Stringer BW, Kozlov S, Fazry S, Bruce ZC, Ensbey KS, Walker DG, Boyd AW, Lavin MF. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol Oncol. 2014Google Scholar
  11. 11.
    Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13:1238–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Koshkin PA, Chistiakov DA, Chekhonin VP. Role of micrornas in mechanisms of glioblastoma resistance to radio- and chemotherapy. Biochem Biokhim. 2013;78:325–34.CrossRefGoogle Scholar
  13. 13.
    Besse A, Sana J, Fadrus P, Slaby O. Micrornas involved in chemo- and radioresistance of high-grade gliomas. Tumour Biol J Int Soc Oncodevelop Biol Med. 2013;34:1969–78.CrossRefGoogle Scholar
  14. 14.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB. Microrna-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci Off J Soc Neurosci. 2008;28:12581–90.CrossRefGoogle Scholar
  16. 16.
    Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. Mir-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting prex2a. FEBS Lett. 2013;587:3729–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu C, Wang Z, Wang Y, Gu W. Mir-338 suppresses the growth and metastasis of OSCC cells by targeting nrp1. Mol Cell Biochem. 2014Google Scholar
  18. 18.
    Sana J, Radova L, Lakomy R, Kren L, Fadrus P, Smrcka M, et al. Risk score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. Carcinogenesis. 2014;35:2756–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using r and bioconductor. New York: Springer; 2005. p. 397–420.CrossRefGoogle Scholar
  21. 21.
    Otomo T, Hishii M, Arai H, Sato K, Sasai K. Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res. 2004;45:53–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, et al. Mir152, mir200b, and miR-338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med (Berl). 2010;88:1041–53.CrossRefGoogle Scholar
  23. 23.
    Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci. 28:573–6.Google Scholar
  24. 24.
    Li X, Nan A, Xiao Y, Chen Y, Lai Y. PP2A-B56 complex is involved in dephosphorylation of gamma-H2AX in the repair process of CPT-induced DNA double-strand breaks. Toxicology. 2015;331:57–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, et al. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response. J Biol Chem. 2015;290:7141–50.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Y, Low LH, Putz U, Goh CP, Tan SS, Howitt J. Rab5 and Ndfip1 are involved in Pten ubiquitination and nuclear trafficking. Traffic. 2014;15:749–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Howitt J, Lackovic J, Low LH, Naguib A, Macintyre A, Goh CP, et al. Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol. 2012;196:29–36.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kalev P, Simicek M, Vazquez I, Munck S, Chen L, Soin T, et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012;72:6414–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Andrej Besse
    • 1
    • 2
  • Jiri Sana
    • 1
    • 2
  • Radek Lakomy
    • 1
  • Leos Kren
    • 3
  • Pavel Fadrus
    • 4
  • Martin Smrcka
    • 4
  • Marketa Hermanova
    • 5
  • Radim Jancalek
    • 6
  • Stefan Reguli
    • 7
  • Radim Lipina
    • 7
  • Marek Svoboda
    • 1
  • Pavel Slampa
    • 8
  • Ondrej Slaby
    • 1
    • 2
    Email author
  1. 1.Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
  3. 3.University Hospital Brno, Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  4. 4.University Hospital Brno, Department of Neurosurgery, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  5. 5.First Department of Pathological Anatomy, St. Anne’s University Hospital and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  6. 6.Department of Neurosurgery, St. Anne’s University Hospital and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  7. 7.Department of NeurosurgeryUniversity Hospital OstravaOstravaCzech Republic
  8. 8.Department of Radiation OncologyMemorial Cancer InstituteBrnoCzech Republic

Personalised recommendations