Tumor Biology

, Volume 37, Issue 6, pp 7981–7987 | Cite as

MiR-130b inhibits proliferation and induces apoptosis of gastric cancer cells via CYLD

  • Baoyou Sun
  • Lei Li
  • Wendong Ma
  • Shikang Wang
  • Chunjin HuangEmail author
Original Article


A role of microRNA-130b (miR-130b) in the carcinogenesis of gastric cancer remains undetermined. In this study, we studied the effects and mechanism of miR-130b to the gastric cell proliferation and apoptosis. We found that the levels of miR-130b significantly up-regulated in gastric cancer tissue, compared to the paired adjacent non-tumor gastric tissue. The miR-130b levels in gastric cancer cell lines were significantly higher than those in control normal gastric tissues. Transfection with the miR-130b mimic enhanced the cell proliferation and suppressed cell apoptosis in gastric cancer cells, while transfection with the anti-sense of miR-130b (anti-miR-130b) suppressed cell proliferation and induced cell apoptosis in gastric cancer cells. Bioinformatics analyses showed that cylindromatosis gene (CYLD) was a potential target gene of miR-130b. The luciferase activity assay and western blot verified that miR-130b targeted CYLD messenger RNA (mRNA) to modulate its protein levels. Together, our study suggests that aberrantly expressed miR-130b may regulate cell apoptosis and proliferation of human gastric cancer cells via CYLD, which appears to be a promising therapeutic target for gastric cancer.


Gastric cancer miR-130b CYLD Proliferation Apoptosis 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Wu W, Ding H, Cao J, Zhang W. FBXL5 inhibits metastasis of gastric cancer through suppressing Snail1. Cell Physiol Biochem. 2015;35:1764–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Mao D, Zhang Y, Lu H, Zhang H. Molecular basis underlying inhibition of metastasis of gastric cancer by anti-VEGFa treatment. Tumour Biol. 2014;35:8217–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Ye Y, Zhou X, Li X, Tang Y, Sun Y, Fang J. Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13. Tumour Biol. 2014;35:10891–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A, et al. Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat. 2014;143:447–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Gautheron J, Luedde T. A novel player in inflammation and cancer: the deubiquitinase CYLD controls HCC development. J Hepatol. 2012;57:937–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Nikolaou K, Tsagaratou A, Eftychi C, Kollias G, Mosialos G, Talianidis I. Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell. 2012;21:738–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Masoumi KC, Shaw-Hallgren G, Massoumi R. Tumor suppressor function of CYLD in nonmelanoma skin cancer. J Skin Cancer. 2011;2011, 614097.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deng LL, Shao YX, Lv HF, Deng HB, Lv FZ. Over-expressing CYLD augments antitumor activity of trail by inhibiting the NF-kappaB survival signaling in lung cancer cells. Neoplasma. 2012;59:18–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell. 2009;34:461–72.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang Y, Zhao Y, Gu W, Cao Y, Wang S, Pang J, et al. Bufalin inhibits the differentiation and proliferation of cancer stem cells derived from primary osteosarcoma cells through miR-148a. Cell Physiol Biochem. 2015;36:1186–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Song W, Li Q, Wang L, Wang L. Modulation of foxo1 expression by miR-21 to promote growth of pancreatic ductal adenocarcinoma. Cell Physiol Biochem. 2015;35:184–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Jin Y, Lu J, Wen J, Shen Y, Wen X. Regulation of growth of human bladder cancer by miR-192. Tumour Biol. 2015;36:3791–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang J, Wang S, Lu L, Wei G. MiR99a modulates MMP7 and MMP13 to regulate invasiveness of Kaposi’s sarcoma. Tumour Biol. 2014;35:12567–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen B, Hou Z, Li C, Tong Y. MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol. 2015;36:7143–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Li N, Yang L, Wang H, Yi T, Jia X, Chen C, et al. MiR-130b and miR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PLoS One. 2015;10, e0128886.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou YM, Liu J, Sun W. MiR-130b overcomes gefitinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac J Cancer Prev. 2014;15:1391–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Boll K, Reiche K, Kasack K, Morbt N, Kretzschmar AK, Tomm JM, et al. MiR-130b, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene. 2013;32:277–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D, et al. MiR-130b targets met and induces trail-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene. 2012;31:634–42.PubMedGoogle Scholar
  23. 23.
    Zhu X, Zhao H, Lin Z, Zhang G. Functional studies of miR-130b on the inhibitory pathways of apoptosis in patients with chronic myeloid leukemia. Cancer Gene Ther 2015.Google Scholar
  24. 24.
    Zhang X, Huang L, Zhao Y, Tan W. Downregulation of miR-130b contributes to cisplatin resistance in ovarian cancer cells by targeting x-linked inhibitor of apoptosis (XIAP) directly. Acta Biochim Biophys Sin (Shanghai). 2013;45:995–1001.CrossRefGoogle Scholar
  25. 25.
    Yang F, Miao L, Mei Y, Wu M. Retinoic acid-induced HOXA5 expression is co-regulated by HuR and miR-130b. Cell Signal. 2013;25:1476–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Liang HL, Hu AP, Li SL, Xie JP, Ma QZ, Liu JY. MiR-454 prompts cell proliferation of human colorectal cancer cells by repressing CYLD expression. Asian Pac J Cancer Prev. 2015;16:2397–402.CrossRefPubMedGoogle Scholar
  27. 27.
    Li D, Jian W, Wei C, Song H, Gu Y, Luo Y, et al. Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. Int J Clin Exp Pathol. 2014;7:7672–80.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Jiang H, Yu WW, Wang LL, Peng Y. MiR-130b acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol Rep. 2015;34:1153–61.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Baoyou Sun
    • 1
  • Lei Li
    • 1
  • Wendong Ma
    • 1
  • Shikang Wang
    • 1
  • Chunjin Huang
    • 2
    Email author
  1. 1.Shandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
  2. 2.Department of General SurgeryHuadong Hospital of Fudan UniversityShanghaiChina

Personalised recommendations