Tumor Biology

, Volume 37, Issue 5, pp 6761–6768 | Cite as

miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1

  • Hanchun Chen
  • Qiong Lu
  • Xifeng Fei
  • Likui Shen
  • Dongyi Jiang
  • Dongwei DaiEmail author
Original Article


Recently, microRNAs (miRNAs), a kind of small and non-coding RNA, can target the downstream molecules. Increasing evidence demonstrates that miRNAs meditate the onset and progression of a variety of tumors. In the present study, we carried out gene transfection, western blot, and reverse transcription PCR (RT-PCR) to explore the role of miR-22 in glioblastoma tissues and cell lines. Here, we verified that the expression of miR-22 was downregulated in glioblastoma tissues and cells rather than matched non-tumor tissues and normal human astrocyte (NHA) cells (p < 0.001). By contrast, SIRT1 messenger RNA (mRNA) and protein were upregulated in glioblastoma tissues and cells (p < 0.001). In vitro miR-22 mimics interfered with cell proliferation, migration, and invasion of U87 and U251 cells. Mechanically, the 3′-untranslated regions (3′-UTRs) of SIRT1 were a direct target of miR-22, leading to the decreased expression of SIRT1 protein in U87 and U251 cells. Meanwhile, miR-22 mimics also inhibited the expression of epidermal growth factor receptor (EGFR) and matrix metallopeptidase 9 (MMP9). In conclusion, miR-22 inhibited cell proliferation, migration, and invasion via targeting the 3′-UTR of SIRT1 in the progression of glioblastoma and miR-22-SIRT1 pathway can be recommended as a potential target for treatment of glioblastoma.


miR-22 SIRT1 Glioblastoma 



This work was supported by the National Natural Science Foundation of China (Project No. 81502163 and 31370810). We greatly thank Bo Hong in Department of Neurosurgery, Changhai Hospital, Second Military Medical University (Shanghai, 200433, P.R. China) for valuable suggestions and his fund.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Jemal A, Siegel R, Xu J. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.CrossRefPubMedGoogle Scholar
  2. 2.
    Liao A, Shi R, Jiang Y, Tian S, Li P, Song F, et al. SDF-1/CXCR4 axis regulates cell cycle progression and epithelial-mesenchymal transition via up-regulation of survivin in glioblastoma. Mol Neurobiol. 2014 Nov 25.Google Scholar
  3. 3.
    Lv Q, Zhang J, Yi Y, Huang Y, Wang Y, Wang Y, et al. Proliferating cell nuclear antigen has an association with prognosis and risks factors of cancer patients: a systematic review. Mol Neurobiol. 2015.Google Scholar
  4. 4.
    Lv B, Yang X, Lv S, Wang L, Fan K, Shi R, et al. CXCR4 signaling induced epithelial-mesenchymal transition by PI3K/AKT and ERK pathways in glioblastoma. Mol Neurobiol. 2015;52(3):1263–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Altieri R, Fontanella M, Agnoletti A, Panciani PP, Spena G, Crobeddu E, et al. Role of nitric oxide in glioblastoma therapy: another step to resolve the terrible puzzle? Transl Med UniSa. 2014;12:54–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    De Paepe A, Vandeneede N, Strens D, Specenier P. The economics of the treatment and follow-up of patients with glioblastoma. Value Health. 2015;18(7):A448.CrossRefGoogle Scholar
  7. 7.
    Kagiya T. MicroRNAs and osteolytic bone metastasis: the roles of microRNAs in tumor-induced osteoclast differentiation. J Clin Med. 2015;4(9):1741–52.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sanei M, Chen X. Mechanisms of microRNA turnover. Curr Opin Plant Biol. 2015;27:199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luna-Aguirre CM, de la Luz M-FM, Mar-Aguilar F, Garza-Veloz I, Treviño-Alvarado V, Rojas-Martinez A, et al. Circulating microRNA expression profile in B-cell acute lymphoblastic leukemia. Cancer Biomark. 2015;15(3):299–310.CrossRefPubMedGoogle Scholar
  10. 10.
    Sampson VB, Yoo S, Kumar A, Vetter NS, Kolb EA. MicroRNAs and potential targets in osteosarcoma: review. Front Pediatr. 2015;3:69.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kanda M, Kodera Y. Recent advances in the molecular diagnostics of gastric cancer. World J Gastroenterol. 2015;21(34):9838–52.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu W, You R, Yuan X, Yang T, Samuel EL, Marcano DC, et al. The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell-dependent emphysema. Nat Immunol. 2015;16(11):1185–94.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang Q, Jiang W, Zhuang C, Geng Z, Hou C, Huang D, et al. MicroRNA-22 downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell proliferation in liver cancer. Oncol Rep. 2015;34(4):1771–8.PubMedGoogle Scholar
  15. 15.
    Zhou Y, Zhou Z, Zhang W, Hu X, Wei H, Peng J, et al. SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell Biosci. 2015;5:61.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maiese K. MicroRNAs and SIRT1: a strategy for stem cell renewal and clinical development? J Transl Sci. 2015;1(3):55–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Shuang T, Wang M, Zhou Y, Shi C. Over-expression of Sirt1 contributes to chemoresistance and indicates poor prognosis in serous epithelial ovarian cancer (EOC). Med Oncol. 2015;32(12):260.CrossRefPubMedGoogle Scholar
  18. 18.
    Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, et al. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J. 2010;277:1684–94.CrossRefPubMedGoogle Scholar
  19. 19.
    García I, Vizoso F, Andicoechea A, Fernandez P, Suarez C, García-Muñz JL, et al. C-erbB-2 oncoprotein content in gastric cancer and in adjacent mucosa. Int J Biol Markers. 2000;15(3):231–4.PubMedGoogle Scholar
  20. 20.
    Dan L, Jian D, Na L, Xiaozhong W. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901. Onco Targets Ther. 2012;5:271–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen W, Zhong X, Wei Y, Liu Y, Yi Q, Zhang G, et al. TGF-β regulates survivin to affect cell cycle and the expression of EGFR and MMP9 in glioblastoma. Mol Neurobiol. 2015.Google Scholar
  22. 22.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang X, Lv S, Liu Y, Li D, Shi R, Tang Z, et al. The clinical utility of matrix metalloproteinase 9 in evaluating pathological grade and prognosis of glioma patients: a meta-analysis. Mol Neurobiol. 2015;52(1):38–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB, et al. p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res. 2010;70(2):832–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Yao C, Li P, Song H, Song F, Qu Y, Ma X, et al. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol Neurobiol. 2015.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Hanchun Chen
    • 1
  • Qiong Lu
    • 2
  • Xifeng Fei
    • 1
  • Likui Shen
    • 1
  • Dongyi Jiang
    • 1
  • Dongwei Dai
    • 3
    Email author
  1. 1.Department of Neurosurgery, Suzhou Kowloon HospitalShanghai Jiao Tong University School of MedicineSuzhouChina
  2. 2.Department of Laboratory Medicine, Changhai HospitalSecond Military Medical UniversityShanghaiChina
  3. 3.Department of Neurosurgery, Changhai HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations