Tumor Biology

, Volume 37, Issue 5, pp 6511–6517 | Cite as

In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system

  • Fadwa Chaabane
  • Nadia Mustapha
  • Imen Mokdad-Bzeouich
  • Aicha Sassi
  • Soumaya Kilani-Jaziri
  • Marie-Geneviève Dijoux Franca
  • Serge Michalet
  • Mayssa Fathallah
  • Mounira Krifa
  • Kamel Ghedira
  • Leila Chekir-Ghedira
Original Article

Abstract

The purpose of this study was to assess the antitumor and immunomodulatory effects of the aqueous extract from Daphne gnidium in mice-bearing melanoma tumor. Balb/C mice were subcutaneously implanted with B16-F10 cells and treated intraperitoneally with the aqueous extract at 200 mg/Kg b.w for 21 days. After euthanization on day 22, the tumors were weighed; lymphocyte proliferation, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell activities were evaluated using the MTT assay. Macrophage phagocytosis was studied by measuring the lysosomal activity. In addition to its potential to inhibit the growth of the transplantable tumor, the aqueous extract remarkably induced splenocyte proliferation and both NK and CTL activities in tumor-bearing mice. The aqueous extract was also seen to have promoted lysosomal activity of host macrophages.

Keywords

Daphne gnidium Anti-melanoma Immunomodulation B16-F10 cells Keratinocytes 

References

  1. 1.
    Tucker MA. Melanoma epidemiology. Hematol Oncol Clin N. 2009;23:383.CrossRefGoogle Scholar
  2. 2.
    Hoang MT, Eichenfield LF. The rising incidence of melanoma in children and adolescents. Dermatol Nurs. 2000;12:188–9. 192–3.PubMedGoogle Scholar
  3. 3.
    Burlage HM, McKenna GF, Taylor A. Anticancer activity of plant extracts. Tex Rep Biol Med. 1956;14:538–56.PubMedGoogle Scholar
  4. 4.
    Mitchell MS. Immunotherapy as part of combinations for the treatment of cancer. Int Immunopharmacol. 2003;3:1051–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Naithani R, Huma L, Moriarty RM, McCormick DL, Mehta RG. Comprehensive review of cancer chemopreventive agents evaluated in experimental chemoprevention models and clinical trials. Curr Med Chem. 2008;15:1044–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Arora R, Chawla R, Singh S, Sagar RK, Kumar R, Sharma A. Bioprospection for radioprotective molecules from indigenous plants. In: Govil JN, editor. Recent progress in medicinal plants. Phytomedicine, vol. 16. Houston, Texas, USA: Published by Studium Press LLC; 2006. p. 179–219.Google Scholar
  7. 7.
    Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012.CrossRefPubMedGoogle Scholar
  8. 8.
    Borris RP, Blasko PG, Cordell GA. Ethnopharmacologic and phytochemical studies of the Thymelaeaceae. J Ethnopharmacol. 1998;24:41–91.CrossRefGoogle Scholar
  9. 9.
    Bellakhdar J, Claisse R, Fleurentin J, Younos C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol. 1991;35:123–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Chaabane F, Pinon A, Simon A, Ghedira K, Chekir-Ghedira L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem Funct. 2013;31:460–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep. 1972;3:1–103.Google Scholar
  12. 12.
    Manosroi A, Saraphanchotiwitthaya A, Manosroi J. In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol. 2005;101:90–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts. J Ethnopharmacol. 2003;89:155–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Krifa M, Skandrani I, Pizzi A, Nasr N, Ghedira Z, Mustapha N, et al. An aqueous extract of Limoniastrum guyonianum gall induces anti-tumor effects in melanoma-injected mice via modulation of the immune response. Food Chem Toxicol. 2014;69:76–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357–68.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cascio D, Ernst W, Modlin R, Krensky A, Eisenberg D, Anderson DH, et al. Granulysin crystal structure and a structure-derived lytic mechanism. Mol Biol. 2003;325:355–65.CrossRefGoogle Scholar
  17. 17.
    Kumar J, Okada S, Clayberger C, Krensky AM. Granulysin: a novel antimicrobial. Expert Opin Investig Drugs. 2001;10:321–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Roit I, Brostoff J, Male D. Immunology. London. Mosby International Ltd. 1998; 5:155–169.Google Scholar
  21. 21.
    Abbas AK. Cellular and molecular immunology, U.S.A. W.B. Saunders Company. 1997; 253, 289: 294.Google Scholar
  22. 22.
    Ribeiro-Dias F, Russo M, Marzagão Barbuto JA, Fernandes do Nascimento FR, Timenetsky J, Jancar S. Mycoplasma arginini enhances cytotoxicity of thioglycollate-elicited murine macrophages toward YAC-1 tumor cells through production of NO. J Leukoc Biol. 1999;65:808–14.PubMedGoogle Scholar
  23. 23.
    Kowalski J. Effect of enkephalins and endorphins on cytotoxic activity of natural killer cells and macrophages/monocytes in mice. Eur J Pharm. 1997;326:251–5.CrossRefGoogle Scholar
  24. 24.
    Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Klimp AH, de Vries EGE, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Cr Rev Oncol-Hem. 2002;44:143–61.CrossRefGoogle Scholar
  26. 26.
    Page RC, Davies P, Allison AC. The macrophage as a secretory cell. Int Rev Cytol. 1978;52:119–23.CrossRefPubMedGoogle Scholar
  27. 27.
    D’Agostini C, Pica F, Febbraro G, Grelli S, Chiavaroli C, Garaci E. Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int Immunopharmacol. 2005;5:1205–12.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fadwa Chaabane
    • 1
  • Nadia Mustapha
    • 1
  • Imen Mokdad-Bzeouich
    • 1
  • Aicha Sassi
    • 1
  • Soumaya Kilani-Jaziri
    • 1
  • Marie-Geneviève Dijoux Franca
    • 3
  • Serge Michalet
    • 3
  • Mayssa Fathallah
    • 1
  • Mounira Krifa
    • 1
  • Kamel Ghedira
    • 1
  • Leila Chekir-Ghedira
    • 1
    • 2
  1. 1.Unité de substances naturelles bioactives et biotechnologyFaculté de pharmacie de MonastirMonastirTunisia
  2. 2.Laboratoire de biologie cellulaire et moléculaireFaculté de médecine dentaire de MonastirMonastirTunisia
  3. 3.UMR 5557 CNRS/Université Lyon1, Equipe Multirésistance environnementale et efflux bactérienCentre d’étude des substances naturellesLyonFrance

Personalised recommendations