Tumor Biology

, Volume 37, Issue 2, pp 1471–1478 | Cite as

Pseudogene-expressed RNAs: a new frontier in cancers

  • Xuefei Shi
  • Fengqi Nie
  • Zhaoxia Wang
  • Ming Sun


Over the past decade, the importance of non-protein-coding functional elements in the human genome has emerged from the water and been identified as a key revelation in post-genomic biology. Since the completion of the ENCODE (Encyclopedia of DNA Elements) and FANTOM (Functional Annotation of Mammals) project, tens of thousands of pseudogenes as well as numerous long non-coding RNA (lncRNA) genes were identified. However, while pseudogenes were initially regarded as non-functional relics littering the human genome during evolution, recent studies have revealed that they play critical roles at multiple levels in diverse physiological and pathological processes, especially in cancer through parental-gene-dependent or parental-gene-independent regulation. Herein, we review the current knowledge of pseudogenes and synthesize the nascent evidence for functional properties and regulatory modalities exerted by pseudogene-transcribed RNAs in human cancers and prospect the potential as molecular signatures in cancer reclassification and tailored therapy.


Pseudogenes RNA Cancer 



This work was supported by grants from the National Natural Science Foundation of China (No.81472198), the Key Clinical Medicine Technology Foundation of Jiangsu Province (No.BL2014096), and the Medical Key Talented Person Foundation of the Jiangsu Provincial Developing Health Project (No.RC2011080).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. doi: 10.1101/gr.132159.111.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, et al. The GENCODE pseudogene resource. Genome Biol. 2012;13(9):R51. doi: 10.1186/gb-2012-13-9-r51.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63. doi: 10.1126/science.1112014.CrossRefPubMedGoogle Scholar
  4. 4.
    Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 1977;12(1):109–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J Genet Genomics. 2013;40(4):171–7. doi: 10.1016/j.jgg.2013.03.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Kazazian Jr HH. Processed pseudogene insertions in somatic cells. Mob DNA. 2014;5:20. doi: 10.1186/1759-8753-5-20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grander D, Johnsson P. Pseudogene-expressed RNAs: emerging roles in gene regulation and disease. Curr Top Microbiol Immunol. 2015. doi: 10.1007/82_2015_442.Google Scholar
  8. 8.
    Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr Opin Microbiol. 2015;23:102–9. doi: 10.1016/j.mib.2014.11.012.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71(3):527–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Hall LL, Byron M, Sakai K, Carrel L, Willard HF, Lawrence JB. An ectopic human XIST gene can induce chromosome inactivation in post differentiation human HT-1080 cells. Proc Natl Acad Sci U S A. 2002;99(13):8677–82. doi: 10.1073/pnas.132468999.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kota SK, Roy Chowdhury D, Rao LK, Padmalatha V, Singh L, Bhadra U. Uncoupling of X-linked gene silencing from XIST binding by DICER1 and chromatin modulation on human inactive X chromosome. Chromosoma. 2015;124(2):249–62. doi: 10.1007/s00412-014-0495-4.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 2003;13(12):2541–58. doi: 10.1101/gr.1429003.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Proudfoot N. Pseudogenes. Nature. 1980;286(5776):840–1.CrossRefPubMedGoogle Scholar
  14. 14.
    Groen JN, Capraro D, Morris KV. The emerging role of pseudogene expressed non-coding RNAs in cellular functions. Int J Biochem Cell Biol. 2014;54:350–5. doi: 10.1016/j.biocel.2014.05.008.CrossRefPubMedGoogle Scholar
  15. 15.
    Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1):17–24. doi: 10.1136/jmedgenet-2014-102785.CrossRefPubMedGoogle Scholar
  16. 16.
    Chan WL, Chang JG. Pseudogene-derived endogenous siRNAs and their function. Methods Mol Biol. 2014;1167:227–39. doi: 10.1007/978-1-4939-0835-6_15.CrossRefPubMedGoogle Scholar
  17. 17.
    Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622–34. doi: 10.1016/j.cell.2012.04.041.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, et al. The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun. 2014;5:3963. doi: 10.1038/ncomms4963.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Welch JD, Baran-Gale J, Perou CM, Sethupathy P, Prins JF. Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential. BMC Genomics. 2015;16:113. doi: 10.1186/s12864-015-1227-8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. doi: 10.1038/nature09144.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344–57. doi: 10.1016/j.cell.2011.09.029.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and microRNA regulation. Biomaterials. 2015;44:71–81. doi: 10.1016/j.biomaterials.2014.12.023.CrossRefPubMedGoogle Scholar
  23. 23.
    Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther. 2014;13(12):3086–97. doi: 10.1158/1535-7163.MCT-14-0245.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Leopold V, et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell. 2015;161(2):319–32. doi: 10.1016/j.cell.2015.02.043.CrossRefPubMedGoogle Scholar
  25. 25.
    Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun. 2014;5:2914. doi: 10.1038/ncomms3914.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zheng L, Li X, Gu Y, Lv X, Xi T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat. 2015;150(1):105–18. doi: 10.1007/s10549-015-3298-2.CrossRefPubMedGoogle Scholar
  27. 27.
    Zheng L, Li X, Gu Y, Ma Y, Xi T. Pseudogene CYP4Z2P 3′UTR promotes angiogenesis in breast cancer. Biochem Biophys Res Commun. 2014;453(3):545–51. doi: 10.1016/j.bbrc.2014.09.112.CrossRefPubMedGoogle Scholar
  28. 28.
    Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, et al. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget. 2014;5(18):8341–54.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle. 2014;13(23):3636–9. doi: 10.4161/15384101.2014.974440.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Han YJ, Ma SF, Yourek G, Park YD, Garcia JG. A transcribed pseudogene of MYLK promotes cell proliferation. FASEB J. 2011;25(7):2305–12. doi: 10.1096/fj.10-177808.CrossRefPubMedGoogle Scholar
  31. 31.
    Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget. 2015;6(8):5666–77.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang TH, Lin YS, Chen Y, Yeh CT, Huang YL, Hsieh TH, et al. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget. 2015;6(27):23342–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mei D, Song H, Wang K, Lou Y, Sun W, Liu Z, et al. Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med Oncol. 2013;30(4):709. doi: 10.1007/s12032-013-0709-2.CrossRefPubMedGoogle Scholar
  34. 34.
    Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA, et al. The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene. 2015;34(2):199–208. doi: 10.1038/onc.2013.547.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34(8):1773–81. doi: 10.1093/carcin/bgt139.CrossRefPubMedGoogle Scholar
  36. 36.
    Hawkins PG, Morris KV. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription. 2010;1(3):165–75. doi: 10.4161/trns.1.3.13332.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lv W, Wang L, Lu J, Mu J, Liu Y, Dong P. Downregulation of TPTE2P1 inhibits migration and invasion of gallbladder cancer cells. Chem Biol Drug Des. 2015;86(4):656–62. doi: 10.1111/cbdd.12533.CrossRefPubMedGoogle Scholar
  38. 38.
    Chan WL, Yuo CY, Yang WK, Hung SY, Chang YS, Chiu CC, et al. Transcribed pseudogene psiPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res. 2013;41(6):3734–47. doi: 10.1093/nar/gkt047.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ye X, Fan F, Bhattacharya R, Bellister S, Boulbes DR, Wang R, et al. VEGFR-1 pseudogene expression and regulatory function in human colorectal cancer cells. Mol Cancer Res. 2015;13(9):1274–82. doi: 10.1158/1541-7786.MCR-15-0061.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science. 2010;328(5985):1563–6. doi: 10.1126/science.1187197.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39(8):3026–41. doi: 10.1093/nar/gkq1003.CrossRefPubMedGoogle Scholar
  42. 42.
    Fujii GH, Morimoto AM, Berson AE, Bolen JB. Transcriptional analysis of the PTEN/MMAC1 pseudogene, psiPTEN. Oncogene. 1999;18(9):1765–9. doi: 10.1038/sj.onc.1202492.CrossRefPubMedGoogle Scholar
  43. 43.
    Poliseno L, Haimovic A, Christos PJ, Vega YSMEC, Shapiro R, Pavlick A, et al. Deletion of PTENP1 pseudogene in human melanoma. J Investig Dermatol. 2011;131(12):2497–500. doi: 10.1038/jid.2011.232.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20(4):440–6. doi: 10.1038/nsmb.2516.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pain D, Chirn GW, Strassel C, Kemp DM. Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem. 2005;280(8):6265–8. doi: 10.1074/jbc.C400587200.CrossRefPubMedGoogle Scholar
  46. 46.
    Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271–8. doi: 10.1634/stemcells.19-4-271.CrossRefPubMedGoogle Scholar
  47. 47.
    Kastler S, Honold L, Luedeke M, Kuefer R, Moller P, Hoegel J, et al. POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate. 2010;70(6):666–74. doi: 10.1002/pros.21100.PubMedGoogle Scholar
  48. 48.
    Scarola M, Comisso E, Pascolo R, Chiaradia R, Maria Marion R, Schneider C, et al. Epigenetic silencing of Oct4 by a complex containing SUV39H1 and Oct4 pseudogene lncRNA. Nat Commun. 2015;6:7631. doi: 10.1038/ncomms8631.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7(12):899–910. doi: 10.1038/nrc2271.CrossRefPubMedGoogle Scholar
  50. 50.
    Lui KY, Peng HR, Lin JR, Qiu CH, Chen HA, Fu RD, et al. Pseudogene integrator complex subunit 6 pseudogene 1 (INTS6P1) as a novel plasma-based biomarker for hepatocellular carcinoma screening. Tumour Biol. 2015. doi: 10.1007/s13277-015-3899-8.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Respiratory MedicineHuzhou Central HospitalHuzhouChina
  2. 2.Department of Oncology, Second Affiliated HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations