Tumor Biology

, Volume 37, Issue 5, pp 6519–6526 | Cite as

Roles of phosphatidylinositol 3-kinase regulatory subunit alpha, activator protein-1, and programmed cell death 4 in diagnosis of papillary thyroid carcinoma

  • Xiaojun Chen
  • Wenjun Wu
  • Xiong ChenEmail author
  • Xiaohua GongEmail author
Original Article


This study evaluated the diagnostic values of phosphatidylinositol 3-kinase regulatory subunit alpha (P85α), activator protein-1 (AP-1), and programmed cell death 4 (PDCD4) in papillary thyroid carcinoma (PTC). P85α, AP-1, and PDCD4 expressions were detected in PTC tissues (n = 116) and thyroid papillary hyperplasia (PTH) tissues (n = 90) by immunohistochemistry, western blot, and enzyme-linked immunosorbent assay (ELISA). Associations of P85α, AP-1, and PDCD4 expressions with clinicopathological features in PTC were analyzed. Diagnostic values of P85α, AP-1, and PDCD4 in PTC were evaluated by receiver operating characteristic (ROC) curve. P85α, AP-1, and PDCD4 expression levels in PTC tissues were statistically different from those in PTH tissues (all P < 0.05). In PTC tissues, AP-1 expression was positively associated with P85α expression (r = 0.841, P < 0.01), while negatively associated with PDCD4 expression (r = −0.755, P < 0.01). P85α expression was associated with lymph node metastasis (LNM) and the degree of differentiation (both P < 0.05); AP-1 and PDCD4 expressions were associated with the degree of differentiation (both P < 0.05). The diagnostic sensitivity and specificity of P85α were 92.2 and 91.1 %, respectively, with a cutoff value of 2.100 and an area under curve (AUC) of 0.966. The diagnostic sensitivity and specificity of AP-1 reached 94.4 and 93.3 % with a cutoff value of 1.655 and an AUC of 0.987. The diagnostic sensitivity and specificity of PDCD4 were 54.4 and 85.6 % with a cutoff value of 2.025 and an AUC of 0.754. P85α, AP-1, and PDCD4 proteins may be related to the tumorigenesis and progression of PTC. Moreover, P85α, AP-1, and PDCD4 proteins may serve as potential diagnostic markers to the biological behavior of PTC.


P85α AP-1 PDCD4 Papillary thyroid carcinoma ROC curve Immunohistochemistry Diagnosis Tumorigenesis 



We would like to acknowledge the reviewers for their helpful comments on this manuscript.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Zhao Y, Liu X, Zhong L, He M, Chen S, Wang T, et al. The combined use of miRNAs and mRNAs as biomarkers for the diagnosis of papillary thyroid carcinoma. Int J Mol Med. 2015;36:1097–103. doi: 10.3892/ijmm.2015.2305.PubMedGoogle Scholar
  2. 2.
    La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136:2187–95. doi: 10.1002/ijc.29251.CrossRefPubMedGoogle Scholar
  3. 3.
    Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22:1144–52. doi: 10.1089/thy.2012.0043.CrossRefPubMedGoogle Scholar
  4. 4.
    Wojcicka A, Czetwertynska M, Swierniak M, Dlugosinska J, Maciag M, Czajka A, et al. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and clinical presentation of papillary thyroid carcinoma. Genes Chromosomes Cancer. 2014;53:516–23. doi: 10.1002/gcc.22162.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012;36:844–50. doi: 10.1097/PAS.0b013e318246b527.CrossRefPubMedGoogle Scholar
  6. 6.
    Calangiu C, Simionescu C, Stepan A, Parnov M, Cercelaru L. The assessment of prognostic histopatholgical parameters depending on histological patterns of papillary thyroid carcinoma. Curr Health Sci J. 2014;40:37–41. doi: 10.12865/CHSJ.40.01.06.PubMedGoogle Scholar
  7. 7.
    Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013:965212. doi: 10.1155/2013/965212.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol. 2010;176:2067–81. doi: 10.2353/ajpath.2010.090353.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390–8. doi: 10.1210/jc.2012-1775.CrossRefPubMedGoogle Scholar
  10. 10.
    Benvenga S, Koch CA. Molecular pathways associated with aggressiveness of papillary thyroid cancer. Curr Genomics. 2014;15:162–70. doi: 10.2174/1389202915999140404100958.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Volinia S, Patracchini P, Otsu M, Hiles I, Gout I, Calzolari E, et al. Chromosomal localization of human p85 alpha, a subunit of phosphatidylinositol 3-kinase, and its homologue p85 beta. Oncogene. 1992;7:789–93.PubMedGoogle Scholar
  12. 12.
    Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220:T1–23. doi: 10.1530/JOE-13-0327.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16. doi: 10.1210/jc.2008-0273.CrossRefPubMedGoogle Scholar
  14. 14.
    Xiang Z, Qu F, Li J, Qi L, Yang Z, Kong X, et al. Activator protein-1 (AP-1) and response to pathogen infection in the Hong Kong oyster (Crassostrea hongkongensis). Fish Shellfish Immunol. 2014;36:83–9. doi: 10.1016/j.fsi.2013.10.005.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang F, Nam S, Zhao R, Tian Y, Liu L, Horne DA, et al. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling. Cancer Biol Ther. 2013;14:1024–31. doi: 10.4161/cbt.26045.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shrotriya S, Kundu JK, Na HK, Surh YJ. Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of cox-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res. 2010;70:1932–40. doi: 10.1158/0008-5472.CAN-09-3501.CrossRefPubMedGoogle Scholar
  17. 17.
    Ma G, Zhang H, Dong M, Zheng X, Ozaki I, Matsuhashi S, et al. Downregulation of programmed cell death 4 (PDCD4) in tumorigenesis and progression of human digestive tract cancers. Tumour Biol. 2013;34:3879–85. doi: 10.1007/s13277-013-0975-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Pennelli G, Fassan M, Mian C, Pizzi M, Balistreri M, Barollo S, et al. PDCD4 expression in thyroid neoplasia. Virchows Arch. 2013;462:95–100. doi: 10.1007/s00428-012-1352-6.CrossRefPubMedGoogle Scholar
  19. 19.
    M PN. World medical association publishes the revised Declaration of Helsinki. Natl Med J India. 2014;27(1):56.Google Scholar
  20. 20.
    Hu Q, Yan C, Xu C, Yan H, Qing L, Pu Y, et al. Matrilysin-2 expression in colorectal cancer is associated with overall survival of patients. Tumour Biol. 2014;35(4):3569–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Campos M, Kool MM, Daminet S, Ducatelle R, Rutteman G, Kooistra HS, et al. Upregulation of the PI3K/Akt pathway in the tumorigenesis of canine thyroid carcinoma. J Vet Intern Med. 2014;28:1814–23. doi: 10.1111/jvim.12435.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. Pi3k/Akt/mTOR: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41:707–13. doi: 10.1016/j.ctrv.2015.06.005.CrossRefPubMedGoogle Scholar
  23. 23.
    Mahata S, Pandey A, Shukla S, Tyagi A, Husain SA, Das BC, et al. Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutr Cancer. 2013;65 Suppl 1:88–97. doi: 10.1080/01635581.2013.785008.CrossRefPubMedGoogle Scholar
  24. 24.
    Ming J, Jiang G, Zhang Q, Qiu X, Wang E. Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol Immunother. 2012;61:79–88. doi: 10.1007/s00262-011-1078-3.CrossRefPubMedGoogle Scholar
  25. 25.
    Onyeagucha BC, Mercado-Pimentel ME, Hutchison J, Flemington EK, Nelson MA. S100P/RAGE signaling regulates microrna-155 expression via AP-1 activation in colon cancer. Exp Cell Res. 2013;319:2081–90. doi: 10.1016/j.yexcr.2013.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu Z, Yan R, Al-Salman A, Shen Y, Bu Y, Ma J, et al. Epidermal growth factor induces tumour marker AKR1B10 expression through activator protein-1 signalling in hepatocellular carcinoma cells. Biochem J. 2012;442:273–82. doi: 10.1042/BJ20111322.CrossRefPubMedGoogle Scholar
  27. 27.
    Mburu YK, Egloff AM, Walker WH, Wang L, Seethala RR, van Waes C, et al. Chemokine receptor 7 (CCR7) gene expression is regulated by NF-kappaB and activator protein 1 (AP1) in metastatic squamous cell carcinoma of head and neck (SCCHN). J Biol Chem. 2012;287:3581–90. doi: 10.1074/jbc.M111.294876.CrossRefPubMedGoogle Scholar
  28. 28.
    Pennelli G, Galuppini F, Barollo S, Cavedon E, Bertazza L, Fassan M, et al. The PDCD4/mir-21 pathway in medullary thyroid carcinoma. Hum Pathol. 2015;46:50–7. doi: 10.1016/j.humpath.2014.09.006.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen Z, Yuan YC, Wang Y, Liu Z, Chan HJ, Chen S. Down-regulation of programmed cell death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2015;152:29–39. doi: 10.1007/s10549-015-3446-8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jin H, Kim TH, Hwang SK, Chang SH, Kim HW, Anderson HK, et al. Aerosol delivery of urocanic acid-modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther. 2006;5:1041–9. doi: 10.1158/1535-7163.MCT-05-0433.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou L, Yang ZX, Song WJ, Li QJ, Yang F, Wang DS, et al. MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol. 2013;43:661–9. doi: 10.3892/ijo.2013.1965.PubMedGoogle Scholar
  32. 32.
    M XM. Genetic make-up modifies cancer outcome. US Patent. 2015;8:980,554.Google Scholar
  33. 33.
    Huang Y, Liao D, Pan L, Ye R, Li X, Wang S, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol. 2013;168:675–81. doi: 10.1530/EJE-12-1029.CrossRefPubMedGoogle Scholar
  34. 34.
    Wei C, Song H, Sun X, Li D, Song J, Hua K, et al. Mir-183 regulates biological behavior in papillary thyroid carcinoma by targeting the programmed cell death 4. Oncol Rep. 2015;34:211–20. doi: 10.3892/or.2015.3971.PubMedGoogle Scholar
  35. 35.
    Zhang J, Yang Y, Liu Y, Fan Y, Liu Z, Wang X, et al. MicroRNA-21 regulates biological behaviors in papillary thyroid carcinoma by targeting programmed cell death 4. J Surg Res. 2014;189:68–74. doi: 10.1016/j.jss.2014.02.012.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of EndocrinologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations