Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 127–140 | Cite as

Monoclonal antibodies-based treatment in gastric cancer: current status and future perspectives

  • Giandomenico Roviello
  • Karol Polom
  • Roberto Petrioli
  • Luigi Marano
  • Daniele Marrelli
  • Giovanni Paganini
  • Vinno Savelli
  • Daniele Generali
  • Lorenzo De Franco
  • Andrea Ravelli
  • Franco Roviello
Review

Abstract

Gastric cancer (GC) is the second leading cause of cancer-related death, and despite having improved treatment modalities over the last decade, for most patients, only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and the related signaling pathways offers, from the clinical point of view, promising advances for selected groups of patients. In the past, targeted therapies have significantly impacted the treatment strategy of several common solid tumors such as breast, colorectal, and lung cancers. Unfortunately, translational and clinical research shows fewer encouraging targeted treatments with regards to the GC. To date, only two monoclonal antibodies (mAb), named trastuzumab and ramucirumab, are approved for the treatment of advanced GC, suggesting that in GC, maybe more than in other cancers, effective targeted therapy requires patient selection based on precise predictive molecular biomarkers. The aim of this review is to summarize the available data on the clinical advantages offered by the use of mAbs in the treatment of advanced/metastatic GC. Future perspective is also discussed.

Keywords

Gastric cancer Target therapy Ramucirumab Trastuzumab Bevacizumab 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Cunningham D, Allum WH, Stenning SP, et al. Perioperativechemotherapy versus surgery alone for resectable gastroesophagealcancer. N Engl J Med. 2006;355(1):11–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Ychou M, Boige V, Pignon J-P, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adeno-carcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29(13):1715–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Marrelli D, Polom K, de Manzoni G, Morgagni P, Baiocchi GL, Roviello F. Multimodal treatment of gastric cancer in the west: where are we going? World J Gastroenterol. 2015;21(26):7954–69.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Petrioli R, Francini E, Roviello F, Marrelli D, Fiaschi AI, Laera L, et al. Sequential treatment with epirubicin, Oxaliplatin and 5FU (EOF) followed by docetaxel, Oxaliplatin and 5FU (DOF) in patients with advanced gastric or gastroesophageal cancer: a single-institution experience. Cancer Chemother Pharmacol. 2015;75(5):941–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Wagner AD, Unverzagt S, Grothe W, Kleber G, Grothey A, Haerting J, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2010;3, CD004064.Google Scholar
  7. 7.
    Ajani JA, Moiseyenko VM, Tjulandin S, et al. Clinical benefit with docetaxel plus fluorouracil and cisplatin compared with cisplatin and fluorouracil in a phase III trial of advanced gastric or gastroesophageal cancer adenocarcinoma: the V-325 study group. J Clin Oncol. 2007;25:3205–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Hironaka S, Ueda S, Yasui H, et al. Randomized, open-label, phase III study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol. 2013;31:4438–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Maugeri-Sacca M, Pizzuti L, Sergi D, et al. FOLFIRI as a second-line therapy in patients with docetaxel-pretreated gastric cancer: a historical cohort. J Exp Clin Cancer Res. 2013;32:67.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.PubMedCrossRefGoogle Scholar
  11. 11.
    de Mello RA, Marques AM, Araújo A. HER2 therapies and gastric cancer: a step forward. World J Gastroenterol. 2013;19:6165–9. doi: 10.3748/wjg.v19.i37.6165.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Janjigian YY, Werner D, Pauligk C, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol. 2012;23:2656–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. REGARD trial investigators. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383(9911):31–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Deng N, Goh LK, Wang H, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–84.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Okines AF, Ashley SE, Cunningham D, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, phase II/III REAL-3 trial. J Clin Oncol. 2010;28:3945–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Rao S, Starling N, Cunningham D, et al. Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer. Br J Cancer. 2008;99:868–74.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rojo F, Tabernero J, Albanell J, et al. Pharmacodynamic studies of Gefitinib in tumor biopsy specimens from patients with advanced gastric carcinoma. J Clin Oncol. 2006;24:4309–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Dragovich T, McCoy S, Fenoglio-Preiser CM, et al. Phase II trial of Erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG0127. J Clin Oncol. 2006;24:4922–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Doi T, Muro K, Boku N, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol. 2010;28:1904–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Marano L, Chiari R, Fabozzi A, De Vita F, Boccardi V, Roviello G, et al. c-Met targeting in advanced gastric cancer: an open challenge. Cancer Lett. 2015.Google Scholar
  22. 22.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesisin health and disease. Cancer Cell. 2002;1(3):219–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim M, Park HJ, Seol JW, et al. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during preg-nancy. EMBO Mol Med. 2013;5(9):1415–30.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takahashi Y, Cleary KR, Mai M, Kitadai Y, Bucana CD, Ellis LM. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin Cancer Res. 1996;2:1679–84.PubMedGoogle Scholar
  28. 28.
    Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 1996;77:858–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T, Horiuchi T, Muraoka R, et al. Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinomas. Cancer Res. 1996;56:2671–6.PubMedGoogle Scholar
  30. 30.
    Maeda K, Kang SM, Ogawa M, Onoda N, Sawada T, Nakata B, et al. Combined analysis of vascular endothelial growth factor and platelet-derived endothelial cell growth factor expression in gastric carcinoma. Int J Cancer. 1997;74:545–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T. Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol. 1997;15:826–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Maeda K, Kang SM, Onoda N, Ogawa M, Kato Y, Sawada T, et al. Vascular endothelial growth factor expression in preoperative biopsy specimens correlates with disease recurrence in patients with early gastric carcinoma. Cancer. 1999;86:566–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double blind phase III trial. Lancet. 2007;370:2103–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus Bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or Bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27:1227–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, O’Reilly E, et al. Multicenter phase II study of irinotecan, cisplatin, and Bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006;24:5201–6.PubMedCrossRefGoogle Scholar
  41. 41.
    El-Rayes BF, Zalupski M, Bekai-Saab T, Heilbrun LK, Hammad N, Patel B, et al. A phase II study of Bevacizumab, Oxaliplatin, and docetaxel in locally advanced and metastatic gastric and gastroesophageal junction cancers. Ann Oncol. 2010;21:1999–2004.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shah MA, Jhawer M, Ilson DH, Lefkowitz RA, Robinson E, Capanu M, et al. Phase II study of modified docetaxel, cisplatin, and fluorouracil with Bevacizumab in patients with metastatic gastroesophageal adenocarcinoma. J Clin Oncol. 2011;29:868–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29:3968–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Cutsem E, de Haas S, Kang YK, Ohtsu A, Tebbutt NC, Ming Xu J, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol. 2012;30:2119–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Shen L, Li J, Xu J, Pan H, Dai G, Qin S, et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer. 2014.Google Scholar
  46. 46.
    Okines AF, Langley RE, Thompson LC, Stenning SP, Stevenson L, Falk S, et al. Bevacizumab with peri-operative epirubicin, cisplatin and capecitabine (ECX) in localised gastro-Oesophageal adenocarcinoma: a safety report. Ann Oncol. 2013;24:702–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28:780–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lu D, Shen J, Vil MD, Zhang H, Jimenez X, Bohlen P, et al. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem. 2003;278:43496–507.PubMedCrossRefGoogle Scholar
  49. 49.
    Miao HQ, Hu K, Jimenez X, Navarro E, Zhang H, Lu D, et al. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2. Biochem Biophys Res Commun. 2006;345:438–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer. 2002;38:1133–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu Z, Hattori K, Zhang H, Jimenez X, Ludwig DL, Dias S, et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia. 2003;17:604–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Yoon HH, Bendell JC, Braiteh FS, Firdaus I, Philip AP, Cohnet LA, et al. Ramucirumab (RAM) plus FOLFOX as front-line therapy (Rx) for advanced gastric or esophageal adenocarcinoma (GE-AC): randomized, double-blind, multicenter phase 2 trial. ASCO meeting abstracts. J Clin Oncol. 2014;32(15 Suppl):4004.Google Scholar
  53. 53.
    A randomized, double-blind, placebo-controlled phase 3 study of capecitabine and cisplatin with or without ramucirumab as first-line therapy in patients with metastatic gastric or gastroesophageal junction adenocarcinoma (RAINFALL). ClinicalTrials.govIdentifier:NCT02314117. Available from http://clinicaltrials.gov/ct2/show/NCT01246960?term=NCT01246960&rank=1.
  54. 54.
    Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:21–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Oda K, Matsuoka Y, Funahashi A, et al. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005.0010.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wang KL, Wu TT, Choi IS, et al. Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Cancer. 2007;109:658–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Galizia G, Lieto E, Orditura M, et al. Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery. World J Surg. 2007;31:1458–68.PubMedCrossRefGoogle Scholar
  59. 59.
    Lieto E, Ferraraccio F, Orditura M, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Nyati MK, Morgan MA, Feng FY, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer. 2006;6:876–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Martinelli E, De Palma R, Orditura M, et al. Antiepidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Saltz LB, Lenz HJ, Kindler HL, et al. Randomized phase II trial of cetuximab, Bevacizumab, and irinotecan compared with cetuximab and Bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol. 2007;25:4557–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.PubMedCrossRefGoogle Scholar
  65. 65.
    Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Wöll E, et al. Cetuximab plus Oxaliplatin/ leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer. 2010;102:500–5.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Moehler M, Mueller A, Trarbach T, Lordick F, Seufferlein T, Kubicka S, et al. Cetuximab with irinotecan, folinic acid and 5-fluorouracil as first-line treatment in advanced gastroesophageal cancer: a prospective multi-center biomarker-oriented phase II study. Ann Oncol. 2011;22:1358–66.PubMedCrossRefGoogle Scholar
  67. 67.
    Pinto C, Di Fabio F, Barone C, Siena S, Falcone A, Cascinu S, et al. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-Oesophageal junction adenocarcinoma (DOCETUX study). Br J Cancer. 2009;101:1261–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Richards D, Kocs DM, Spira AI, David McCollum A, Diab S, Hecker LI, et al. Results of docetaxel plus Oxaliplatin (DOCOX) ± cetuximab in patients with metastatic gastric and/or gastroesophageal junction adenocarcinoma: results of a randomised phase 2 study. Eur J Cancer. 2013;49:2823–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:490–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Chau I, Okines AFC, de Castro González D, Saffery C, Barbachano Y, Wotherspoon L, et al. REAL3: a multicentre randomized phase II/III trial of epirubicin, oxaliplatin, and capecitabine (EOC) versus modified (m) EOC plus panitumumab (P) in advanced oesophagogastric (OG) cancer. Response rate (RR), toxicity, and molecular analysis from phase II. J Clin Oncol. 2011;29. Abstract 4131.Google Scholar
  71. 71.
    Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:481–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    NCT01379807. Efficacy and safety of panitumumab combined with docetaxel and cisplatin as a first-line treatment of advanced gastric or gastroesophageal junction adenocarcinoma (SPIGA). Available from: URL: http:// clinicaltrial.gov/ct2/show/study/NCT01379807?term = panitumumab gastric cancer HYPERLINKGoogle Scholar
  73. 73.
    Lo KM, Lan Y, Zhang X. The role of ADCC effector function in the anti-tumor efficacy of anti-EGFR antibodies in a mouse xenograft model. AACR-NCI-EORTC. Int Conf Mol Targets Cancer Ther. 2003. Abstract A123.Google Scholar
  74. 74.
    Rao S, Starling N, Cunningham D, Sumpter K, Gilligan D, Ruhstaller T, et al. Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: a randomised, multicentre open-label phase II study. Ann Oncol. 2010;21(11):2213–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim YH, Sasaki Y, Lee KH, Rha SY, Park S, Boku N, et al. Randomized phase II study of nimotuzumab, an anti-EGFR antibody, plus iri in patients with 5-fluorouracil-based regimen-refractory advanced or recurrent gastric cancer in Korea and Japan: preliminary results. J Clin Oncol. 2011;29. Abstract 87.Google Scholar
  76. 76.
    Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12 Suppl 1:S3–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Cidon EU, Centeno RG, Lagarto EG, Peral JI. HER-2 evaluation in a specific gastric cancer population with the highest rate of mortality in Spain. J Oncol. 2011;2011:391564.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grabsch H, Sivakumar S, Gray S, Gabbert HE, M€uller W. HER2 expression in gastric cancer: rare, heterogeneous and of no prognostic value e conclusions from 924 cases of two independent series. Cell Oncol. 2010;32:57–65.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of Trastuzumab (Herceptin). Semin Oncol. 1999;26:60–70.PubMedGoogle Scholar
  81. 81.
    HELOISE Study: a study of herceptin (Trastuzumab) in combination with cisplatin/capecitabine chemotherapy in patients with HER2-positive metastatic gastric or gastro-esophageal junction cancer. NCT01641939Google Scholar
  82. 82.
    A study of capecitabine [xeloda] in combination with trastuzumab [herceptin] and oxaliplatine in patients with resectable gastric cancer [Internet]. 2014 [cited 2014 June 12]. Available online: http://clinicaltrials.gov/show/ NCT01130337
  83. 83.
    Explorative phase II study of perioperative treatment in patients with adenocarcinoma of the gastroesophageal junction or stomach (HerFLOT) [Internet]. 2014 [cited 2014June 12]. Available online: http://www.clinicaltrials.gov/ct2/ show/NCT01472029?term = NCT01472029&rank = 1
  84. 84.
    A study of the combination of oxaliplatin, capecitabine and herceptin (trastuzumab) and chemoradiotherapy in the adjuvant setting in operated patients with HER2+ gastric or gastro-esophageal junction cancer (TOXAG study) [Internet]. 2014 [cited 2014 June 12]. Available online: http://www.clinicaltrials.gov/show/NCT01748773
  85. 85.
    Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies Trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64:2343–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of Trastuzumab and Pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69:9330–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus Trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.PubMedCrossRefGoogle Scholar
  88. 88.
    Kang YK, Rha SY, Tassone P, Barriuso J, Yu R, Szado T, et al. A phase IIa dose-finding and safety study of first-line Pertuzumab in combination with Trastuzumab, capecitabine and cisplatin in patients with HER2-positive advanced gastric cancer. Br J Cancer. 2014;111:660–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hoff P, Tabernero J, Shen L, et al. Ann Oncol. 2013;24:iv67.CrossRefGoogle Scholar
  90. 90.
    Barok M, Tanner M, Köninki K, Isola J. Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett. 2011;306:171–9.PubMedCrossRefGoogle Scholar
  91. 91.
    A study of trastuzumab emtansine versus taxane in patients with advanced gastric cancer [Internet]. 2014 [cited 2014 June 12]. Available online: http://clinicaltrials.gov/show/ NCT01641939
  92. 92.
    Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol. 2011;29:4837–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3:S21–35.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hara T, Ooi A, Kobayashi M, Mai M, Yanagihara K, Nakanishi I. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab Investig. 1998;78:1143–53.PubMedGoogle Scholar
  95. 95.
    Tsugawa K, Yonemura Y, Hirono Y, Fushida S, Kaji M, Miwa K, et al. Amplification of the c-met, c-erbB-2 and epidermal growth factor receptor gene in human gastric cancers: correlation to clinical features. Oncology. 1998;55:475–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, Yamashita J, et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer. 1999;85:1894–902.PubMedCrossRefGoogle Scholar
  97. 97.
    Huang TJ, Wang JY, Lin SR, Lian ST, Hsieh JS. Overexpression of the c-met protooncogene in human gastric carcinoma-correlation to clinical features. Acta Oncol. 2001;40:638–43.PubMedCrossRefGoogle Scholar
  98. 98.
    Amemiya H, Kono K, Itakura J, Tang RF, Takahashi A, An FQ, et al. c-Met expression in gastric cancer with liver metastasis. Oncology. 2002;63:286–96.PubMedCrossRefGoogle Scholar
  99. 99.
    Oliner KS, Tang R, Anderson A, et al. Evaluation of MET pathway biomarkers in a phase II study of rilotumumab (R, AMG 102) or placebo (P) in combination with epirubicin, cisplatin, and capecitabine (ECX) in patients (pts) with locally advanced or metastatic gastric (G) or esophagogastric junction (EGJ) cancer. J Clin Oncol. 2012;30. abstr 4005.Google Scholar
  100. 100.
    A Phase 3, Multicenter, randomized, double-blind, placebo controlled study of rilotumumab (AMG102) with epirubicin, cisplatin, and capecitabine (ECX) as first-line therapy in advanced MET-positive gastric or gastroesophageal junction adenocarcinoma (NCT01697072). Available from: URL: https://clinicaltrials.gov/ct2/show/NCT01697072.
  101. 101.
    A phase 3 study of rilotumumab (AMG 102) with cisplatin and capecitabine (CX) as first-line therapy in gastric cancer (RILOMET-2) (NCT02137343). Available from: URL: https://clinicaltrials.gov/ct2/show/NCT02137343.
  102. 102.
    Shah MA, Cho JY, Huat ITB, et al. Randomized phase II study of FOLFOX +/− MET inhibitor, onartuzumab (O), in advanced gastroesophageal adenocarcinoma (GEC). J Clin Oncol. 2015;33 suppl 3. abstr 2.Google Scholar
  103. 103.
    Shah MA, Bang Y, Lordick F, Tabernero J, et al. METGastric: a phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC). J Clin Oncol. 2015;33 (suppl; abstr 4012).Google Scholar
  104. 104.
    Strickler JH, LoRusso P, Yen C, Lin C, Kang YK, Kaminker P, et al. Phase 1, open-label, dose-escalation, and expansion study of ABT-700, an anti-C-met antibody, in patients (pts) with advanced solid tumors. J Clin Oncol. 2014;32(5s) (suppl; abstr 2507).Google Scholar
  105. 105.
    Kang Y, LoRusso P, Salgia R, Yen C, Lin C, Ramanathan RK, et al. Phase I study of ABT-700, an anti-c-Met antibody, in patients (pts) with advanced gastric or esophageal cancer (GEC). J Clin Oncol. 2015;33 suppl 3. abstr 167.Google Scholar
  106. 106.
    Ravelli A, Reuben JM, Lanza F, Anfossi S, Cappelletti MR, Zanotti L, et al. Solid tumor working party of the European Blood and Marrow Transplantation Society (EBMT). Immune-related strategies driving immunotherapy in breast cancer treatment: a real clinical opportunity. Expert Rev Anticancer Ther. 2015;15(6):689–702.PubMedCrossRefGoogle Scholar
  107. 107.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Muro K, Bang Y, Shankaran V, et al. LBA15 a phase 1b study of pembrolizumab (PEMBRO; MK-3475) in patients (PTS) with advanced gastric cancer. Ann Oncol. 2014;25:v1–v41.CrossRefGoogle Scholar
  109. 109.
    Muro K, Bang Y, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Relationship between PD-L1 expression and clinical outcomes in patients (Pts) with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (pembro; MK-3475) in KEYNOTE-012. J Clin Oncol. 2015;33 suppl 3. abstr 3.Google Scholar
  110. 110.
    Lutzky J, Antonia SJ, Haskins AB, Li X, Robbins PB, Shalabi AM, et al. A phase 1 study of MEDI4736, an anti–PD-L1 antibody, in patients with advanced solid tumors. J Clin Oncol. 2014;32(5s) (suppl; abstr 3001^).Google Scholar
  111. 111.
  112. 112.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  113. 113.
    You WC, Blot WJ, Li JY, Chang YS, Jin ML, Kneller R, et al. Precancerous gastric lesions in a population at high risk of stomach cancer. Cancer Res. 1993;53:1317–21.PubMedGoogle Scholar
  114. 114.
    Correa P, Haenszel W, Cuello C, Zavala D, Fontham E, Zarama G, et al. Gastric precancerous process in a high risk population: cross-sectional studies. Cancer Res. 1990;50:4731–6.PubMedGoogle Scholar
  115. 115.
    Peek RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2:28–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.PubMedCrossRefGoogle Scholar
  119. 119.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRefGoogle Scholar
  120. 120.
  121. 121.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Marrelli D, Polom K, Pascale V, Vindigni C, Piagnerelli R, De Franco L, et al. Strong prognostic value of microsatellite instability in intestinal type non-cardia gastric cancer. Ann Surg Oncol. 2015.Google Scholar
  123. 123.
  124. 124.
  125. 125.
    Aprile G, Ongaro E, Del Re M, Lutrino SE, Bonotto M, Ferrari L, et al. Angiogenic inhibitors in gastric cancers and gastroesophageal junction carcinomas: a critical insight. Crit Rev Oncol Hematol. 2015.Google Scholar
  126. 126.
    Roviello G, Petrioli R, Marano L, Polom K, Marrelli D, Perrella A, et al. Angiogenesis inhibitors in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015.Google Scholar
  127. 127.
    De Vita F, Di Martino N, Fabozzi A, Laterza MM, Ventriglia J, Savastano B, et al. Clinical management of advanced gastric cancer: the role of new molecular drugs. World J Gastroenterol. 2014;20(40):14537–58.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Park SR, Kook MC, Choi IJ, et al. Predictive factors for the efficacy of cetuximab plus chemotherapy as salvage therapy in metastatic gastric cancer patients. Cancer Chemother Pharmacol. 2010;65:579–87.PubMedCrossRefGoogle Scholar
  129. 129.
    Luber B, Deplazes J, Keller G, et al. Biomarker analysis of cetuximab plus Oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and oesophago-gastric junction cancer: results from a phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer. 2011;11:509.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Giandomenico Roviello
    • 1
  • Karol Polom
    • 2
  • Roberto Petrioli
    • 3
  • Luigi Marano
    • 4
  • Daniele Marrelli
    • 5
  • Giovanni Paganini
    • 6
  • Vinno Savelli
    • 7
  • Daniele Generali
    • 8
  • Lorenzo De Franco
    • 5
  • Andrea Ravelli
    • 9
  • Franco Roviello
    • 2
  1. 1.Section of pharmacology and University Center DIFF—Drug Innovation Forward Future, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
  2. 2.Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive SurgeryUniversity of SienaSienaItaly
  3. 3.Medical Oncology UnitUniversity of SienaSienaItaly
  4. 4.General, Minimally Invasive and Robotic Surgery, Department of Surgery“San Matteo degli Infermi” HospitalSpoletoItaly
  5. 5.Department of Medical, Surgical and Neurosciences, Section of Advanced Surgical OncologyUniversity of SienaSienaItaly
  6. 6.Unit of General MedicineAzienda Ospedaliera “C. Poma ” Presidio ospedaliero di Pieve di CorianoMantovaItaly
  7. 7.Department of Surgery and Bioengineering, Section of SurgeryUniversity of SienaSienaItaly
  8. 8.Department of Medical, Surgery and Health SciencesUniversity of TriesteTriesteItaly
  9. 9.Department of Clinical and Experimental MedicineUniversity of ParmaParmaItaly

Personalised recommendations