Tumor Biology

, Volume 37, Issue 12, pp 15627–15633 | Cite as

VEGF-activated miR-144 regulates autophagic survival of prostate cancer cells against Cisplatin

  • Feng Liu
  • Jihong WangEmail author
  • Qiang Fu
  • Xinru Zhang
  • Ying Wang
  • Jialin Liu
  • Jianwen Huang
  • Xiangguo Lv
Original Article


Cisplatin is a commonly used chemotherapy drug for prostate cancer (PC). However, some PCs are resistant to cisplatin treatment, while the molecular mechanisms underlying the resistance of PCs to cisplatin are not completely understood. In this study, we found that cisplatin dose-dependently activated Beclin-1 in two PC cell lines, PC3 and LNCap. Autophagy suppression significantly increased the cisplatin-induced cell death of these PC cells in a CCK-8 assay. Moreover, microRNA (miR)-144 levels were significantly downregulated in cisplatin-treated PC cells, in a VEGF-dependent manner. Bioinformatics analysis showed that miR-144 targeted the 3′-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. In PC patients after cisplatin treatment, low miR-144 levels appeared to predict poor outcome of patients’ survival. Together, these data suggest that cisplatin may induce VEGF to suppress miR-144 levels in PC cells, which subsequently upregulates Beclin-1 to increase autophagic cell survival against cisplatin-induced cell death. Upregulation of miR-144 or suppression of cell autophagy may improve the outcome of cisplatin therapy in PC.


Prostate cancer Cisplatin Autophagy Beclin-1 miR-144 VEGF 


Conflicts of interest



  1. 1.
    Saylor PJ. Prostate cancer: the androgen receptor remains front and centre. Nat Rev Clin Oncol. 2013;10:126–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Alva A, Hussain M. The changing natural history of metastatic prostate cancer. Cancer J. 2013;19:19–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Beltran H, Rubin MA. New strategies in prostate cancer: Translating genomics into the clinic. Clin Cancer Res. 2013;19:517–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Xin L. Cells of origin for cancer: an updated view from prostate cancer. Oncogene. 2013;32:3655–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Huang S, Liao Q, Li L, Xin D. Pttg1 inhibits smad3 in prostate cancer cells to promote their proliferation. Tumour Biol. 2014;35:6265–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Xia Q, Li C, Bian P, Wang J, Dong S. Targeting smad3 for inhibiting prostate cancer metastasis. Tumour Biol. 2014;35:8537–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem. 2015;35:926–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Li T, Zhao X, Mo Z, Huang W, Yan H, Ling Z, et al. Formononetin promotes cell cycle arrest via downregulation of akt/cyclin d1/cdk4 in human prostate cancer cells. Cell Physiol Biochem. 2014;34:1351–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Gillies K, Wertman J, Charette N, Dupre DJ. Anterograde trafficking of cxcr4 and ccr2 receptors in a prostate cancer cell line. Cell Physiol Biochem. 2013;32:74–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A. 2011;108:1850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Villar J, Quadri HS, Song I, Tomita Y, Tirado OM, Notario V. Pcph/entpd5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase calpha-mediated bcl-2 stabilization. Cancer Res. 2009;69:102–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized pt(iv) prodrug-plga-peg nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–61.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157:65–75.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155:1216–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang CY, Huang SP, Lin VC, Yu CC, Chang TY, Lu TL, et al. Genetic variants of the autophagy pathway as prognostic indicators for prostate cancer. Sci Rep. 2015;5:14045.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014;11:508–16.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, et al. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol. 2013;27:280–95.CrossRefPubMedGoogle Scholar
  20. 20.
    Ouyang DY, Xu LH, He XH, Zhang YT, Zeng LH, Cai JY, et al. Autophagy is differentially induced in prostate cancer lncap, du145 and pc-3 cells via distinct splicing profiles of atg5. Autophagy. 2013;9:20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lian J, Karnak D, Xu L. The bcl-2-beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy. 2010;6:1201–3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lamoureux F, Zoubeidi A. Dual inhibition of autophagy and the akt pathway in prostate cancer. Autophagy. 2013;9:1119–20.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eichmann A, Simons M. Vegf signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol. 2012;24:188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ferrara N, Gerber HP, LeCouter J. The biology of vegf and its receptors. Nat Med. 2003;9:669–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of vegf in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-vegf adjuvant therapy in cancer: Challenges and rationale. Trends Mol Med. 2010;16:122–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of vascular endothelial growth factor (vegf) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165:35–52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shima DT, Adamis AP, Ferrara N, Yeo KT, Yeo TK, Allende R, et al. Hypoxic induction of endothelial cell growth factors in retinal cells: Identification and characterization of vascular endothelial growth factor (vegf) as the mitogen. Mol Med. 1995;1:182–93.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Cheng SY, Nagane M, Huang HS, Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms vegf121 and vegf165 but not vegf189. Proc Natl Acad Sci U S A. 1997;94:12081–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998;18:6178–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Di Leva G, Croce CM. Mirna profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through mir-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits egfr-signaling-dependent mmp9 activation via suppressing akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu G, Jiang C, Li D, Wang R, Wang W. Mirna-34a inhibits egfr-signaling-dependent mmp7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao M, Huang J, Gui K, Xiong M, Cai G, Xu J, et al. The downregulation of mir-144 is associated with the growth and invasion of osteosarcoma cells through the regulation of tagln expression. Int J Mol Med. 2014;34:1565–72.PubMedGoogle Scholar
  39. 39.
    Cao T, Li H, Hu Y, Ma D, Cai X. Mir-144 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting e2f3. Tumour Biol. 2014;35:10759–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Zha W, Cao L, Shen Y, Huang M. Roles of mir-144-zfx pathway in growth regulation of non-small-cell lung cancer. PLoS One. 2013;8, e74175.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP, et al. Mir-101 and mir-144 regulate the expression of the cftr chloride channel in the lung. PLoS One. 2012;7, e50837.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T, Tanaka F, et al. Downregulation of mir-144 is associated with colorectal cancer progression via activation of mtor signaling pathway. Carcinogenesis. 2012;33:2391–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Akiyoshi S, Fukagawa T, Ueo H, Ishibashi M, Takahashi Y, Fabbri M, et al. Clinical significance of mir-144-zfx axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br J Cancer. 2012;107:1345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, Sileri P, Cretella M, Pallone F, et al. Differential expression of mir-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol. 2011;46:1391–402.CrossRefPubMedGoogle Scholar
  45. 45.
    Huang SQ, Liao QJ, Wang XW, Xin DQ, Chen SX, Wu QJ, et al. Rnai-mediated knockdown of pituitary tumor- transforming gene-1 (pttg1) suppresses the proliferation and invasive potential of pc3 human prostate cancer cells. Braz J Med Biol Res. 2012;45:995–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Horoszewicz JS, Leong SS, Carter WA. Differential susceptibility of spleen focus-forming virus and murine leukemia viruses to ansamycin antibiotics. Antimicrob Agents Chemother. 1977;12:4–10.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Coronnello C, Benos PV. Comir: Combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013;41:W159–64.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Feng Liu
    • 1
  • Jihong Wang
    • 2
    Email author
  • Qiang Fu
    • 2
  • Xinru Zhang
    • 2
  • Ying Wang
    • 3
  • Jialin Liu
    • 4
  • Jianwen Huang
    • 2
  • Xiangguo Lv
    • 2
  1. 1.Department of UrologyShanghai Fengxian District Central HospitalShanghaiChina
  2. 2.Department of UrologyShanghai Jiaotong University Affiliated the Sixth People’s HospitalShanghaiChina
  3. 3.Department of UrologyShanghai the Fifth People’s HospitalShanghaiChina
  4. 4.School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations