Tumor Biology

, Volume 37, Issue 4, pp 5039–5047 | Cite as

A c-Myc/miR-17-5p feedback loop regulates metastasis and invasion of hepatocellular carcinoma

  • Dongli Liu
  • Lili Dong
  • Yang Liu
  • Duo Wen
  • Dongmei Gao
  • Huichuan Sun
  • Jia Fan
  • Weizhong WuEmail author
Original Article


The molecular mechanisms that control metastasis of hepatocellular cancer (HCC) are still poorly understood. It has been determined that microRNA (miRNA) expression has tissue and cell specific, and decreased expression of specific miRNA could induce tumor genesis or metastasis. In this study, we identified that miR-17-5p was expressed lower in high metastatic capability HCC cell lines HCCLM3 and MHCC97H than low metastatic HCC cell line HepG2 by real-time (RT)-PCR. Restoration of miR-17-5p could significantly repress the invasiveness and metastasis of MHCC97H cell line. Furthermore, we validated c-Myc as a downstream and functional target of miR-17-5p using luciferase reporter assay. Immunohistochemical assay revealed that the expression of c-Myc protein levels was significantly increased in cancerous tissues compared with para-tumor tissues. After clinical data analysis, we observed that the higher level of c-Myc was significantly associated with a reduced overall survival (p = 0.0209). Consistent with previous research, we also demonstrated that c-Myc could upregulate the expression of miR-17-5p. Taken together, our data indicated that there is a regulatory feedback loop between miR-17-5p and c-Myc, in which miR-17-5p could suppress some of the distinguishing features, invasion, and metastasis, of oncogenic c-Myc in HCC cells, and meanwhile, miR-17-5p is upregulated by c-Myc role as a transcription factor, although further studies are still needed.


Hepatocellular carcinoma (HCC) miR-17-5p c-Myc Regulatory feedback loop Metastasis Invasion 



The project was jointly supported by the National Science Foundation of China (81272437, 81472675).

Compliance with ethical standards

All procedures were approved by the Zhongshan Hospital Research Ethics Committee. Informed consent was obtained from each patient according to regulations set forth by the Ethics Committee.

Conflicts of interest


Authors’ contributions

DL Liu, LL Dong, and WZ Wu conceived and designed the study. DL Liu, LL Dong, Y Liu, and D Wen performed the experiments including IHC, RT-PCR, Western blotting and in vivo assays. DL Liu and LL Dong performed luciferase reporter assays. DL Liu, LL Dong, and WZ Wu analyzed the data and prepared the manuscript. DM Gao, HC Sun, and J Fan participated in the study design. All authors read and approved the final manuscript.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi: 10.1038/nature02871.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55. doi: 10.1038/nature10888.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33(6):1126–33. doi: 10.1093/carcin/bgs140.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149(3):515–24. doi: 10.1016/j.cell.2012.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66. doi: 10.1101/gad.1712408.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151(1):56–67. doi: 10.1016/j.cell.2012.08.026.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151(1):68–79. doi: 10.1016/j.cell.2012.08.033.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi: 10.1101/gad.1067003.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A. 2003;100(14):8164–9. doi: 10.1073/pnas.1332764100.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90(8):1612–9. doi: 10.1038/sj.bjc.6601703.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS. Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol. 2007;82(1):85–90. doi: 10.1016/j.yexmp.2006.09.001.CrossRefPubMedGoogle Scholar
  15. 15.
    Sierra A, Castellsague X, Escobedo A, Moreno A, Drudis T, Fabra A. Synergistic cooperation between c-Myc and Bcl-2 in lymph node progression of T1 human breast carcinomas. Breast Cancer Res Treat. 1999;54(1):39–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A. 2010;107(47):20471–6. doi: 10.1073/pnas.1009009107.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi: 10.1016/j.cell.2012.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bonauer A, Dimmeler S. The microRNA-17-92 cluster: still a miRacle? Cell Cycle. 2009;8(23):3866–73.CrossRefPubMedGoogle Scholar
  20. 20.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33. doi: 10.1038/nature03552.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64(9):3087–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Ptashne M. Binding reactions: epigenetic switches, signal transduction and cancer. Curr Biol CB. 2009;19(6):R234–41. doi: 10.1016/j.cub.2009.02.015.CrossRefPubMedGoogle Scholar
  23. 23.
    Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med. 2009;47(2):115–27. doi: 10.1016/j.freeradbiomed.2009.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    El Tayebi HM, Omar K, Hegy S, El Maghrabi M, El Brolosy M, Hosny KA, et al. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern. Biochem Biophys Res Commun. 2013;434(3):421–7. doi: 10.1016/j.bbrc.2013.04.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol WJG. 2001;7(5):630–6.PubMedGoogle Scholar
  26. 26.
    Sun FX, Tang ZY, Lui KD, Ye SL, Xue Q, Gao DM, et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int J Cancer J Int Du Cancer. 1996;66(2):239–43. doi: 10.1002/(SICI)1097-0215(19960410)66:2<239::AID-IJC17>3.0.CO;2-7.CrossRefGoogle Scholar
  27. 27.
    Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol. 2003;129(1):43–51. doi: 10.1007/s00432-002-0396-4.PubMedGoogle Scholar
  28. 28.
    Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, et al. Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy. 2013;9(11):1780–800. doi: 10.4161/auto.25665.CrossRefPubMedGoogle Scholar
  29. 29.
    Hu YJ, Li HY, Qiu KJ, Li DC, Zhou JH, Hu YH, et al. Downregulation of Notch1 inhibits the invasion of human hepatocellular carcinoma Hepg2 and MHCC97H cells through the regulation of PTEN and FAK. Int J Mol Med. 2014;34(4):1081–6. doi: 10.3892/ijmm.2014.1889.PubMedGoogle Scholar
  30. 30.
    Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210(4):789–803. doi: 10.1084/jem.20120153.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. doi: 10.1016/j.cell.2007.04.040.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(16):2707–16. doi: 10.1200/JCO.2007.15.6521.CrossRefGoogle Scholar
  33. 33.
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87. doi: 10.1038/nrc1934.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103(24):9136–41. doi: 10.1073/pnas.0508889103.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Secombe J, Pierce SB, Eisenman RN. Myc: a weapon of mass destruction. Cell. 2004;117(2):153–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99(6):3830–5. doi: 10.1073/pnas.062036999.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell. 2009;35(5):610–25. doi: 10.1016/j.molcel.2009.08.020.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lin F, Ding R, Zheng S, Xing D, Hong W, Zhou Z, et al. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell Int. 2014;14:58. doi: 10.1186/1475-2867-14-58.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Dongli Liu
    • 1
  • Lili Dong
    • 1
  • Yang Liu
    • 1
  • Duo Wen
    • 2
  • Dongmei Gao
    • 1
  • Huichuan Sun
    • 1
  • Jia Fan
    • 1
    • 3
  • Weizhong Wu
    • 1
    Email author
  1. 1.Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghaiChina
  2. 2.Department of Medical Oncology, Shanghai Cancer CenterFudan UniversityShanghaiChina
  3. 3.Institute of Biomedical SciencesFudan UniversityShanghaiChina

Personalised recommendations