Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 5213–5223 | Cite as

FOXM1 expression in rhabdomyosarcoma: a novel prognostic factor and therapeutic target

  • Masaaki Kuda
  • Kenichi Kohashi
  • Yuichi Yamada
  • Akira Maekawa
  • Yoshiaki Kinoshita
  • Tetsuya Nakatsura
  • Yukihide Iwamoto
  • Tomoaki Taguchi
  • Yoshinao OdaEmail author
Original Article

Abstract

The transcription factor Forkhead box M1 (FOXM1) is known to play critical roles in the development and progression of various types of cancer, but the clinical significance of FOXM1 expression in rhabdomyosarcoma (RMS) is unknown. This study aimed to determine the role of FOXM1 in RMS. We investigated the expression levels of FOXM1 and vascular endothelial growth factor (VEGF) and angiogenesis in a large series of RMS clinical cases using immunohistochemistry (n = 92), and we performed clinicopathologic and prognostic analyses. In vitro studies were conducted to examine the effect of FOXM1 knock-down on VEGF expression, cell proliferation, migration, and invasion in embryonal RMS (ERMS) and alveolar RMS (ARMS) cell lines, using small interference RNA (siRNA). High FOXM1 expression was significantly increased in the cases of ARMS, which has an adverse prognosis compared to ERMS (p = 0.0310). The ERMS patients with high FOXM1 expression (n = 25) had a significantly shorter survival than those with low FOXM1 expression (n = 24; p = 0.0310). FOXM1 expression was statistically correlated with VEGF expression in ERMS at the protein level as shown by immunohistochemistry and at the mRNA level by RT-PCR. The in vitro study demonstrated that VEGF mRNA levels were decreased in the FOXM1 siRNA-transfected ERMS and ARMS cells. FOXM1 knock-down resulted in a significant decrease of cell proliferation and migration in all four RMS cell lines and invasion in three of the four cell lines. Our results indicate that FOXM1 overexpression may be a prognostic factor of RMS and that FOXM1 may be a promising therapeutic target for the inhibition of RMS progression.

Keywords

Rhabdomyosarcoma FOXM1 VEGF Prognosis 

Notes

Acknowledgments

This work was supported by JSPS KAKEN Grant Number 26462708 and Grant Number 25293088. The English used in this article was revised by KN International (http://www.kninter.com/).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Parham DM, Barr FG. Embryonal rhabdomyosarcoma. Alveolar rhabdomyosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. World Health Organization classification of tumours. WHO classification of tumours of soft tissue and bone. Lyon: IARC Press; 2013. p. 127–32.Google Scholar
  2. 2.
    Kelly KM, Womer RB, Sorensen PH, Xiong QB, Barr FG. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15:1831–6.CrossRefGoogle Scholar
  3. 3.
    Parham DM. Pathologic classification of rhabdomyosarcomas and correlations with molecular studies. Mod Pathol Off J U S Can Acad Pathol Inc. 2001;14:506–14.Google Scholar
  4. 4.
    Lae M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR, et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol. 2007;212:143–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of pax3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 1993;53:5108–12.PubMedGoogle Scholar
  6. 6.
    Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of pax7 to fkhr by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994;54:2869–72.PubMedGoogle Scholar
  7. 7.
    Scrable HJ, Witte DP, Lampkin BC, Cavenee WK. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature. 1987;329:645–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Visser M, Sijmons C, Bras J, Arceci RJ, Godfried M, Valentijn LJ, et al. Allelotype of pediatric rhabdomyosarcoma. Oncogene. 1997;15:1309–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A, et al. FOXM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7:126–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Laoukili J, Stahl M, Medema RH. FOXM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92–102.PubMedGoogle Scholar
  11. 11.
    Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. Forkhead box m1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev. 2010;36:151–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 1819;2012:28–37.Google Scholar
  13. 13.
    Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG. FOXM1 is a downstream target of gli1 in basal cell carcinomas. Cancer Res. 2002;62:4773–80.PubMedGoogle Scholar
  14. 14.
    Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV, et al. The forkhead box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 2006;66:2153–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S, et al. FOXM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat. 2010;122:337–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Nakamura S, Hirano I, Okinaka K, Takemura T, Yokota D, Ono T, et al. The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Carcinogenesis. 2010;31:2012–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Priller M, Poschl J, Abrao L, von Bueren AO, Cho YJ, Rutkowski S, et al. Expression of FOXM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:6791–801.CrossRefGoogle Scholar
  18. 18.
    Chu XY, Zhu ZM, Chen LB, Wang JH, Su QS, Yang JR, et al. FOXM1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem. 2012;114:755–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012;72:655–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Okada K, Fujiwara Y, Takahashi T, Nakamura Y, Takiguchi S, Nakajima K, et al. Overexpression of forkhead box m1 transcription factor (FOXM1) is a potential prognostic marker and enhances chemoresistance for docetaxel in gastric cancer. Ann Surg Oncol. 2013;20:1035–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Y, Wen L, Zhao SH, Ai ZH, Guo JZ, Liu WC. FoxM1 expression is significantly associated with cisplatin-based chemotherapy resistance and poor prognosis in advanced non-small cell lung cancer patients. Lung Cancer. 2013;79:173–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Li X, Qi W, Yao R, Tang D, Liang J. Overexpressed transcription factor FOXM1 is a potential diagnostic and adverse prognostic factor in postoperational gastric cancer patients. Clin Transla Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2014;16:307–14.Google Scholar
  23. 23.
    Christensen L, Joo J, Lee S, Wai D, Triche TJ, May WA. Foxm1 is an oncogenic mediator in Ewing sarcoma. PLoS One. 2013;8:e54556.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sengupta A, Rahman M, Mateo-Lozano S, Tirado OM, Notario V. The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing’s sarcoma. Int J Oncol. 2013;43:803–12.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yu J, Deshmukh H, Payton JE, Dunham C, Scheithauer BW, Tihan T, et al. Array-based comparative genomic hybridization identifies cdk4 and foxm1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:1924–34.CrossRefGoogle Scholar
  26. 26.
    Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, et al. Forkhead box m1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the scf (skp2-cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Grant GD, Brooks 3rd L, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in u2os cells and their regulation by foxm1 and e2f transcription factors. Mol Biol Cell. 2013;24:3634–50.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wan X, Yeung C, Kim SY, Dolan JG, Ngo VN, Burkett S, et al. Identification of foxm1/bub1b signaling pathway as a required component for growth and survival of rhabdomyosarcoma. Cancer Res. 2012;72:5889–99.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Miyoshi K, Kohashi K, Fushimi F, Yamamoto H, Kishimoto J, Taguchi T, et al. Close correlation between CXCR4 and VEGF expression and frequent CXCR7 expression in rhabdomyosarcoma. Hum Pathol. 2014;45:1900–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, et al. Foxm1b transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res. 2008;68:8733–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, et al. Critical role and regulation of transcription factor foxm1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009;69:3501–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karadedou CT, Gomes AR, Chen J, Petkovic M, Ho KK, Zwolinska AK, et al. Foxo3a represses VEGF expression through foxm1-dependent and -independent mechanisms in breast cancer. Oncogene. 2012;31:1845–58.CrossRefPubMedGoogle Scholar
  34. 34.
    Jin L, Majerus J, Oliveira A, Inwards CY, Nascimento AG, Burgart LJ, et al. Detection of fusion gene transcripts in fresh-frozen and formalin-fixed paraffin-embedded tissue sections of soft-tissue sarcomas after laser capture microdissection and RT-PCR. Diagn Mol Pathol Am J Surg Pathol B. 2003;12:224–30.CrossRefGoogle Scholar
  35. 35.
    Oda Y, Tateishi N, Matono H, Matsuura S, Yamamaoto H, Tamiya S, et al. Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer J Int Cancer. 2009;124:1852–9.CrossRefGoogle Scholar
  36. 36.
    Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R, et al. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol Off J U S Can Acad Pathol Inc. 2006;19:738–45.Google Scholar
  37. 37.
    Kohashi K, Oda Y, Yamamoto H, Tamiya S, Matono H, Iwamoto Y, et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol Off J U S Can Acad Pathol Inc. 2010;23:981–90.Google Scholar
  38. 38.
    Endo M, Yamamoto H, Setsu N, Kohashi K, Takahashi Y, Ishii T, et al. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19:450–61.CrossRefGoogle Scholar
  39. 39.
    Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R, et al. Aberrant foxm1b expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene. 2007;26:6212–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang IC, Meliton L, Tretiakova M, Costa RH, Kalinichenko VV, Kalin TV. Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene. 2008;27:4137–49.CrossRefPubMedGoogle Scholar
  41. 41.
    Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A, et al. Genome-wide expression analysis of middle eastern colorectal cancer reveals foxm1 as a novel target for cancer therapy. Am J Pathol. 2011;178:537–47.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sun H, Teng M, Liu J, Jin D, Wu J, Yan D, et al. FOXM1 expression predicts the prognosis in hepatocellular carcinoma patients after orthotopic liver transplantation combined with the Milan criteria. Cancer Lett. 2011;306:214–22.CrossRefPubMedGoogle Scholar
  43. 43.
    Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, et al. Upregulated FoxM1 expression induced by hepatitis B virus x protein promotes tumor metastasis and indicates poor prognosis in hepatitis b virus-related hepatocellular carcinoma. J Hepatol. 2012;57:600–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Cao L, Yu Y, Darko I, Currier D, Mayeenuddin LH, Wan X, et al. Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody. Cancer Res. 2008;68:8039–48.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xu J, Timares L, Heilpern C, Weng Z, Li C, Xu H, et al. Targeting wild-type and mutant p53 with small molecule cp-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res. 2010;70:6566–76.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kawabata N, Ijiri K, Ishidou Y, Yamamoto T, Nagao H, Nagano S, et al. Pharmacological inhibition of the hedgehog pathway prevents human rhabdomyosarcoma cell growth. Int J Oncol. 2011;39:899–906.PubMedGoogle Scholar
  47. 47.
    Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven BA, Gowan S, et al. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19:5940–51.CrossRefGoogle Scholar
  48. 48.
    van Gaal JC, Roeffen MH, Flucke UE, van der Laak JA, van der Heijden G, de Bont ES, et al. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: a rational choice. Eur J Cancer. 2013;49:3462–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, Xu J, et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget. 2014;5:12151–65.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box m1)/SKP2, and c-Myc pathways. Hepatology. 2012;55:833–45.CrossRefPubMedGoogle Scholar
  51. 51.
    Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, et al. Sonic hedgehog-dependent proliferation in a series of patients with colorectal cancer. Surgery. 2006;139:665–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH. Down-regulation of forkhead box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res. 2007;67:8293–300.CrossRefPubMedGoogle Scholar
  53. 53.
    Jiang L, Wang P, Chen L, Chen H. Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells. Int J Clin Exp Pathol. 2014;7:5450–60.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wen N, Wang Y, Wen L, Zhao SH, Ai ZH, Wang Y, et al. Overexpression of FoxM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med. 2014;12:134.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human fox family genes. Cancer Lett. 2013;328:198–206.CrossRefPubMedGoogle Scholar
  56. 56.
    Martinelli S, McDowell HP, Vigne SD, Kokai G, Uccini S, Tartaglia M, et al. Ras signaling dysregulation in human embryonal rhabdomyosarcoma. Genes Chromosomes Cancer. 2009;48:975–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Zibat A, Missiaglia E, Rosenberger A, Pritchard-Jones K, Shipley J, Hahn H, et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene. 2010;29:6323–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG. Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;57:930–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:748–57.CrossRefGoogle Scholar
  60. 60.
    Chan DW, Yu SY, Chiu PM, Yao KM, Liu VW, Cheung AN, et al. Over-expression of FOXM1 transcription factor is associated with cervical cancer progression and pathogenesis. J Pathol. 2008;215:245–52.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Masaaki Kuda
    • 1
  • Kenichi Kohashi
    • 1
  • Yuichi Yamada
    • 1
  • Akira Maekawa
    • 1
  • Yoshiaki Kinoshita
    • 2
  • Tetsuya Nakatsura
    • 4
  • Yukihide Iwamoto
    • 3
  • Tomoaki Taguchi
    • 2
  • Yoshinao Oda
    • 1
    Email author
  1. 1.Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Pediatric Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of Orthopedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  4. 4.Division of Cancer ImmunotherapyNational Cancer Center Hospital EastKashiwaJapan

Personalised recommendations