Tumor Biology

, Volume 37, Issue 4, pp 4909–4918 | Cite as

Radiosensitisation of human glioma cells by inhibition of β1,6-GlcNAc branched N-glycans

  • Li Shen
  • Xiao-Xia Dong
  • Jun-Bo Wu
  • Li Qiu
  • Qi-Wen Duan
  • Zhi-Guo LuoEmail author
Original Article


Gliomas are the most prevalent type of primary brain tumors and are resistant to radiation therapy. β1,6-GlcNAc branched N-glycans, which are encoded by N-acetylglucosaminyltransferase V (GnT-V), play important roles in glioma progression. However, the relationship between β1,6-GlcNAc branched expression and radiosensitivity in glioma cells is still unknown. In this study, the expression of β1,6-GlcNAc branched N-glycans in nonneoplastic brain and glioma samples was characterized by lectin histochemistry. The radiosensitivity of glioma cells was evaluated by colony formation assay. We found that β1,6-GlcNAc branches were highly expressed in glioblastoma specimens, compared with diffuse astrocytomas and nonneoplastic brain. In addition, β1,6-GlcNAc branched expression was negatively correlated with the radiosensitivity of glioblastoma cells. Furthermore, the inhibition of N-linked β1,6-GlcNAc branches by GnT-V silencing in U251 cells could reduce the cell clonogenic survival after X-irradiation. Meanwhile, the G2/M checkpoint was impaired and there was an increase in the number of apoptotic cells. Tunicamycin, an inhibitor of N-glycan biosynthesis, was also able to enhance the radiosensitivity of U251 cells. Thus, our results suggest that development of therapeutic approaches targeting N-linked β1,6-GlcNAc branches may be a promising strategy in glioblastoma treatment.


β1,6-GlcNAc branched N-glycans GnT-V Glioma Radiosensitivity 



This study was supported by grants from the Foundation for Innovative Research Team of Hubei University of Medicine (2014CXG02), the Key Discipline Project of Hubei Province (2014XKJSXJ12), and the Scientific and Technological Project of Shiyan City of Hubei Province (15K65).

Compliance of ethical standards

Informed consent was obtained from all patients enrolled in this study, and the study protocol was approved by the Ethics Committee of Hubei University of Medicine.

Conflicts of interest



  1. 1.
    Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–93. doi: 10.3322/caac.20069.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–25. discussion 26–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Fuller GN, Scheithauer BW. The 2007 revised World Health Organization (WHO) classification of tumours of the central nervous system: newly codified entities. Brain Pathol. 2007;17(3):304–7. doi: 10.1111/j.1750-3639.2007.00084.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. doi: 10.1016/S1470-2045(09)70025-7.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao YP, Xu XY, Fang M, Wang H, You Q, Yi CH, et al. Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One. 2014;9(4):e94536. doi: 10.1371/journal.pone.0094536.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang X, Wang Y, Qian Y, Wu X, Zhang Z, Liu X, et al. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics. PLoS One. 2014;9(2):e87978. doi: 10.1371/journal.pone.0087978.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang Z, Zhao Y, Jiang L, Miao X, Zhou H, Jia L. Glycomic alterations are associated with multidrug resistance in human leukemia. Int J Biochem Cell Biol. 2012;44(8):1244–53. doi: 10.1016/j.biocel.2012.04.026.CrossRefPubMedGoogle Scholar
  8. 8.
    Kudo T, Nakagawa H, Takahashi M, Hamaguchi J, Kamiyama N, Yokoo H, et al. N-glycan alterations are associated with drug resistance in human hepatocellular carcinoma. Mol Cancer. 2007;6:32. doi: 10.1186/1476-4598-6-32.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li N, Xu H, Fan K, Liu X, Qi J, Zhao C, et al. Altered beta1,6-GlcNAc branched N-glycans impair TGF-beta-mediated epithelial-to-mesenchymal transition through Smad signalling pathway in human lung cancer. J Cell Mol Med. 2014;18(10):1975–91. doi: 10.1111/jcmm.12331.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, et al. Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res. 2000;60(1):134–42.PubMedGoogle Scholar
  11. 11.
    Padhiar AA, Fan J, Tang Y, Yu J, Wang S, Liu L, et al. Upregulated beta1-6 branch N-glycan marks early gliomagenesis but exhibited biphasic expression in the progression of astrocytic glioma. Am J Cancer Res. 2015;5(3):1101–16.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhuo E, He J, Wei T, Zhu W, Meng H, Li Y, et al. Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo. Biochem Biophys Res Commun. 2012;424(3):554–62. doi: 10.1016/j.bbrc.2012.07.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Huang H, Chen W, Liu Q, Wei T, Zhu W, Meng H, et al. Inhibition of N-acetylglucosaminyltransferase V enhances sensitivity of radiotherapy in human prostate cancer. Biochem Biophys Res Commun. 2014;451(3):345–51. doi: 10.1016/j.bbrc.2014.06.097.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, et al. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer. 2010;10:415. doi: 10.1186/1471-2407-10-415.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shen L, Liu Z, Tu Y, Xu L, Sun X, Wu S. Regulation of MMP-2 expression and activity by beta-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep. 2011;38(3):1541–50. doi: 10.1007/s11033-010-0262-4.CrossRefPubMedGoogle Scholar
  16. 16.
    Wei F, Liu Y, Guo Y, Xiang A, Wang G, Xue X, et al. miR-99b-targeted mTOR induction contributes to irradiation resistance in pancreatic cancer. Mol Cancer. 2013;12:81. doi: 10.1186/1476-4598-12-81.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ke Q, Wu J, Ming B, Zhu S, Yu M, Wang Y, et al. Identification of the PAG1 gene as a novel target of inherent radioresistance in human laryngeal carcinoma cells. Cancer Biother Radiopharm. 2012;27(10):678–84. doi: 10.1089/cbr.2012.1191.CrossRefPubMedGoogle Scholar
  18. 18.
    Shen L, Yu M, Xu X, Gao L, Ni J, Luo Z, et al. Knockdown of beta3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int J Oncol. 2014;45(6):2560–8. doi: 10.3892/ijo.2014.2672.PubMedGoogle Scholar
  19. 19.
    Fan J, Wang S, Yu S, He J, Zheng W, Zhang J. N-acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147. Glycoconj J. 2012;29(5–6):323–34. doi: 10.1007/s10719-012-9414-1.CrossRefPubMedGoogle Scholar
  20. 20.
    Carvalho FC, Soares SG, Tamarozzi MB, Rego EM, Roque-Barreira MC. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line. PLoS One. 2011;6(11):e27892. doi: 10.1371/journal.pone.0027892.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamamoto H, Oviedo A, Sweeley C, Saito T, Moskal JR. Alpha2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res. 2001;61(18):6822–9.PubMedGoogle Scholar
  22. 22.
    Jiang J, Chen X, Shen J, Wei Y, Wu T, Yang Y, et al. Beta1,4-galactosyltransferase V functions as a positive growth regulator in glioma. J Biol Chem. 2006;281(14):9482–9. doi: 10.1074/jbc.M504489200.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu J, Shen L, Yang L, Hu S, Xu L, Wu S. High expression of beta3GnT8 is associated with the metastatic potential of human glioma. Int J Mol Med. 2014;33(6):1459–68. doi: 10.3892/ijmm.2014.1736.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tang W, Chang SB, Hemler ME. Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell. 2004;15(9):4043–50. doi: 10.1091/mbc.E04-05-0402.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Cordeiro M, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology. 2013;15(2):172–88. doi: 10.1093/neuonc/nos298.CrossRefPubMedGoogle Scholar
  26. 26.
    Ma H, Miao X, Ma Q, Zheng W, Zhou H, Jia L. Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life. 2013;65(5):409–22. doi: 10.1002/iub.1133.CrossRefPubMedGoogle Scholar
  27. 27.
    Dawson G, Moskal JR, Dawson SA. Transfection of 2,6 and 2,3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J Neurochem. 2004;89(6):1436–44. doi: 10.1111/j.1471-4159.2004.02435.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Kong Z, Xie D, Boike T, Raghavan P, Burma S, Chen DJ, et al. Downregulation of human DAB2IP gene expression in prostate cancer cells results in resistance to ionizing radiation. Cancer Res. 2010;70(7):2829–39. doi: 10.1158/0008-5472.CAN-09-2919.CrossRefPubMedGoogle Scholar
  29. 29.
    Chetty C, Bhoopathi P, Rao JS, Lakka SS. Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer. 2009;124(10):2468–77. doi: 10.1002/ijc.24209.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang Y, Chen LH, Wang L, Wang HM, Zhang YW, Shi YS. Radiation-inducible PTEN expression radiosensitises hepatocellular carcinoma cells. Int J Radiat Biol. 2010;86(11):964–74. doi: 10.3109/09553002.2010.496032.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, et al. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget. 2014;5(2):544–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhong J, Martinez M, Sengupta S, Lee A, Wu X, Chaerkady R, et al. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway. Proteomics. 2015;15(2–3):591–607. doi: 10.1002/pmic.201400339.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Freitas Junior JC, Silva Bdu R, de Souza WF, de Araujo WM, Abdelhay ES, Morgado-Diaz JA. Inhibition of N-linked glycosylation by tunicamycin induces E-cadherin-mediated cell-cell adhesion and inhibits cell proliferation in undifferentiated human colon cancer cells. Cancer Chemother Pharmacol. 2011;68(1):227–38. doi: 10.1007/s00280-010-1477-8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Li Shen
    • 1
  • Xiao-Xia Dong
    • 2
  • Jun-Bo Wu
    • 3
  • Li Qiu
    • 1
  • Qi-Wen Duan
    • 1
  • Zhi-Guo Luo
    • 1
    Email author
  1. 1.Department of Clinical Oncology, Taihe HospitalHubei University of MedicineShiyanChina
  2. 2.Department of PharmacologyHubei University of MedicineShiyanChina
  3. 3.Center for Evidence-based Medicine and Clinical Research, Taihe HospitalHubei University of MedicineShiyanChina

Personalised recommendations