Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 4777–4784 | Cite as

Genetic variants in miR-196a2 and miR-499 are associated with susceptibility to esophageal squamous cell carcinoma in Chinese Han population

  • Fangyuan Shen
  • Jiejun Chen
  • Shicheng Guo
  • Yinghui Zhou
  • Yabiao Zheng
  • Yajun Yang
  • Junjie Zhang
  • Xiaofeng Wang
  • Chenji Wang
  • Dunmei Zhao
  • Mengyun Wang
  • Meiling Zhu
  • Lixia Fan
  • Jiaqing Xiang
  • Yong Xia
  • Qingyi Wei
  • Li Jin
  • Jiucun Wang
  • Minghua Wang
Original Article

Abstract

Esophageal squamous cell carcinoma (ESCC) is the dominant type of esophageal cancer in the East Asian population. MicroRNAs (miRNAs) have been studied to play important roles in tumorigenesis. Single nucleotide polymorphisms (SNPs) in miRNA lead to the aberrant expression and structural alteration of miRNA and are hypothesized to be involved in tumorigenesis and cancer development. We conducted a population-based case-control study to evaluate the association between SNPs in miRNAs and ESCC risk in 1400 ESCC cases and 2185 matched controls. Four SNPs including miR-196a2 rs11614913, miR-146a rs2910164, miR-499 rs3746444, and miR-423 rs6505162 were selected with comprehensive collection strategy and genotyped using the SNaPshot Multiplex System. Odds ratio (OR) and 95 % confidence interval (95 % CI) were used to assess the strength of association. The CC genotype of miR-196a2 rs11614913 was significantly associated with an increased ESCC risk compared with the TT genotype (OR 1.11, 95 % CI 1.01–1.22, P 0.049) and the TT/TC genotypes (OR 1.09, 95 % CI 1.01–1.19, P 0.043). The association was more pronounced in non-drinkers in the recessive model (OR 1.13, 95 % CI 1.01–1.27, P 0.029). A significantly increased risk of ESCC associated with miR-499 rs3746444 polymorphism was evident among patients who never smoking and drinking. This study suggests that miR-196a2 rs11614913 and miR-499 rs3746444 are associated with an increased ESCC risk in a Chinese population.

Keywords

ESCC susceptibility miR-196a2 miR-499 rs11614913 rs3746444 

Abbreviations

CI

Confidence interval

ESCC

Esophageal squamous cell carcinoma

miRNA

MicroRNA

OR

Odds ratio

SNP

Single nucleotide polymorphism

ROC

Receiver operating characteristic

AUC

Area under the curve

Notes

Acknowledgments

This work was supported by the grant from the National Natural Science Foundation of China (grant number 81071957), National Natural Science Foundation of China (grant number 81572923), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Key Project in the National Science & Technology Pillar Program (grant number 2011BAI09B00), The Ministry of Health (grant number 201002007), and the funds from “China’s Thousand Talents Program” at Fudan University.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int J Cancer. 2002;99(6):860–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Levine DM, Ek WE, Zhang R, Liu X, Onstad L, Sather C, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet. 2013;45(12):1487–93.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bass AJ, Meyerson M. Genome-wide association study in esophageal squamous cell carcinoma. Gastroenterology. 2009;137(5):1573–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Guo S, Wang YL, Li Y, Jin L, Xiong M, Ji QH, et al. Significant SNPs have limited prediction ability for thyroid cancer. Cancer Med. 2014;3(3):731–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang P, Wang J, Lu T, Wang X, Zheng Y, Guo S, et al. miR-449b rs10061133 and miR-4293 rs12220909 polymorphisms are associated with decreased esophageal squamous cell carcinoma in a Chinese population. Tumour Biol. Jun 9 2015.Google Scholar
  7. 7.
    Guo H, Wang K, Xiong G, Hu H, Wang D, Xu X, et al. A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer. 2010;9(4):599–603.CrossRefPubMedGoogle Scholar
  8. 8.
    Gen Y, Yasui K, Zen Y, Zen K, Dohi O, Endo M, et al. Sox2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet. 2010;202(2):82–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Hu N, Clifford RJ, Yang HH, Wang C, Goldstein AM, Ding T, et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma. BMC Genomics. 2010;11:576.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary microRNAs. Can J Physiol Pharmacol. 2015;14:1–6.Google Scholar
  11. 11.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics. 2012;10(5):246–53.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 2006;4(1):9–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–98.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Setoyama T, Ling H, Natsugoe S, Calin GA. Non-coding RNAs for medical practice in oncology. Keio J Med. 2011;60(4):106–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Tong N, Xu B, Shi D, Du M, Li X, Sheng X, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res. 2013;28:16–21.Google Scholar
  17. 17.
    Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69(14):5970–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Okubo M, Tahara T, Shibata T, Yamashita H, Nakamura M, Yoshioka D, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter. 2010;15(6):524–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahn DH, Rah H, Choi YK, Jeon YJ, Min KT, Kwack K, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog. 2013;52 Suppl 1:E39–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang X, Lu M, Qian J, Yang Y, Li S, Lu D, et al. Rationales, design and recruitment of the Taizhou Longitudinal Study. BMC Public Health. 2009;9:223.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS ONE. 2013;8(4):e61047.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF, Xie SY. The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS ONE. 2013;8(9):e70656.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci. 2010;55(8):2288–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Akkiz H, Bayram S, Bekar A, Akgollu E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case–control study. J Viral Hepat. 2011;18(7):e399–407.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang K, Guo H, Hu H, Xiong G, Guan X, Li J, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. Biomarkers. 2010;15(7):614–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Wei J, Zheng L, Liu S, Yin J, Wang L, Wang X, et al. MiR-196a2 rs11614913 T > C polymorphism and risk of esophageal cancer in a Chinese population. Hum Immunol. 2013;74(9):1199–205.CrossRefPubMedGoogle Scholar
  27. 27.
    Xiang Y, Fan S, Cao J, Huang S, Zhang LP. Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population. Mol Biol Rep. 2012;39(6):7019–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou B, Wang K, Wang Y, Xi M, Zhang Z, Song Y, et al. Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol Carcinog. 2011;50(7):499–505.CrossRefPubMedGoogle Scholar
  29. 29.
    Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila). 2008;1(6):460–9.CrossRefGoogle Scholar
  30. 30.
    Umar M, Upadhyay R, Prakash G, Kumar S, Ghoshal UC, Mittal B. Evaluation of common genetic variants in pre-microRNA in susceptibility and prognosis of esophageal cancer. Mol Carcinog. 2013;52 Suppl 1:E10–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fangyuan Shen
    • 1
  • Jiejun Chen
    • 2
  • Shicheng Guo
    • 3
  • Yinghui Zhou
    • 1
  • Yabiao Zheng
    • 1
  • Yajun Yang
    • 3
  • Junjie Zhang
    • 1
  • Xiaofeng Wang
    • 3
  • Chenji Wang
    • 1
  • Dunmei Zhao
    • 1
  • Mengyun Wang
    • 4
    • 5
  • Meiling Zhu
    • 4
    • 5
  • Lixia Fan
    • 1
  • Jiaqing Xiang
    • 5
    • 6
  • Yong Xia
    • 7
  • Qingyi Wei
    • 4
    • 8
  • Li Jin
    • 3
  • Jiucun Wang
    • 3
  • Minghua Wang
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Medical CollegeSoochow UniversitySuzhouChina
  2. 2.China National Center for Biotechnology DevelopmentBeijingChina
  3. 3.MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina
  5. 5.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  6. 6.Department of Thoracic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
  7. 7.College of Acupuncture-Moxibustion and TuinaShanghai University of Traditional Chinese MedicineShanghaiChina
  8. 8.Duke Cancer Institute, Duke University Medical CenterDurhamUSA

Personalised recommendations