Skip to main content

Advertisement

Log in

Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR)

  • Original Article
  • Published:
Tumor Biology

Abstract

The purposes of this study were to investigate the potential roles of long noncoding RNA (lncRNA) PVT1 in thyroid cancer cell proliferation and to explore their possible mechanisms. A total of 84 patients who were diagnosed as having thyroid cancer (papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC)) in Renji Hospital were enrolled in this study. Expressions of lncRNA PVT1 in thyroid cancer tissues and cell lines (IHH-4, FTC-133, and 8505C) were analyzed using RT-polymerase chain reaction (PCR) and western blotting analysis. The effects of lncRNA PVT1 expression on thyroid cancer cell proliferation and cell cycle were analyzed using flow cytometry. Furthermore, the effects of lncRNA expression on thyroid-stimulating hormone receptor (TSHR) expression and polycomb enhancer of zeste homolog 2 (EZH2) were also analyzed using RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. Compared to the controls, lncRNA PVT1 was significantly up-regulated in thyroid tissues, as well as in three kinds of tumor cell lines (P < 0.05). Silenced PVT1 significantly inhibited thyroid cell line IHH-4, FTC-133, and 8505C cell proliferation and arrested cell cycle at G0/G1 stage and significantly decreased cyclin D1 and TSHR expressions (P < 0.05). Moreover, lncRNA PVT1 could be enriched by EZH2, and silencing PVT1 resulted in the decreased recruitment of EZH2. This study suggested that lncRNA PVT1 may contribute to tumorigenesis of thyroid cancer through recruiting EZH2 and regulating TSHR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mills K, Radic M, Neeli I, Phillips M, Peck CC, Wilkes B, et al. Protocol for protein isolation from human orbital fat tissue: use for western blots and antigen biomarker identification in thyroid eye disease. Invest Ophthalmol Vis Sci. 2013;54:5903–3.

    Google Scholar 

  2. Cho BY, Choi HS, Park YJ, Lim JA, Ahn HY, Lee EK, et al. Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid. 2013;23:797–804.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carling T, Carty SE, Ciarleglio MM, Cooper DS, Doherty GM, Kim LT, et al. American thyroid association design and feasibility of a prospective randomized controlled trial of prophylactic central lymph node dissection for papillary thyroid carcinoma. Thyroid. 2012;22:237–44.

    Article  PubMed  Google Scholar 

  4. Tomisawa Y, Ogasawara S, Kojika M, Hoshikawa K, Nishizuka S. Association between granulocyte colonies stimulating factor (G-CSF) production and leukocytosis in anaplastic thyroid carcinoma. Thyroid Disord Ther. 2013;2:2.

    Google Scholar 

  5. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. Journal of oncology 2011;2011

  6. Hay ID, Lee RA, Davidge-Pitts C, Reading CC, Charboneau JW. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154:1448–55.

    Article  PubMed  Google Scholar 

  7. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci. 2008;105:7004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shore AN, Herschkowitz JI, Rosen JM. Noncoding RNAs involved in mammary gland development and tumorigenesis: there’s a long way to go. J Mammary Gland Biol Neoplasia. 2012;17:43–58.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013;280:1709–16.

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sørensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M, et al. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat. 2013;142:529–36.

    Article  PubMed  CAS  Google Scholar 

  13. Cheetham S, Gruhl F, Mattick J, Dinger M. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci. 2012;109:8646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Guo Q, Zhao Y, Chen J, Wang S, Hu J, et al. Braf-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett. 2014;8:1947–52.

    PubMed  PubMed Central  Google Scholar 

  16. Colombo T, Farina L, Macino G, Paci P. PVT1: a rising star among oncogenic long noncoding RNAs. BioMed Res Int 2015;2015

  17. Huang C, Yu W, Cui H, Wang Y, Zhang L, Han F, et al. Increased expression of the lncRNA PVT1 is associated with poor prognosis in pancreatic cancer patients. Minerva Med. 2015.

  18. Yang Y-R, Zang S-Z, Zhong C-L, Li Y-X, Zhao S-S, Feng X-J. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer. Int J Clin Exp Pathol. 2014;7:6929.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brand OJ, Barrett JC, Simmonds MJ, Newby PR, Mccabe CJ, Bruce CK, et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease (GD). Hum Mol Genet. 2009.

  20. Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev. 2013;34:691–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Koppen CJ, de Gooyer ME, Karstens WJ, Plate R, Conti PG, van Achterberg TA, et al. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid‐stimulating hormone receptor. Br J Pharmacol. 2012;165:2314–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Organization WH: International statistical classification of diseases and related health problems. World Health Organ, 2009.

  23. Cohen MS, Hussain HB, Moley JF. Inhibition of medullary thyroid carcinoma cell proliferation and ret phosphorylation by tyrosine kinase inhibitors. Surgery. 2002;132:960–7.

    Article  PubMed  Google Scholar 

  24. Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  25. Darzynkiewicz Z, Zhao H. Cell cycle analysis by flow cytometry. eLS. 2014.

  26. Nikiforova MN, Caudill CM, Biddinger P, Nikiforov YE. Prevalence of RET/PTC rearrangements in Hashimoto’s thyroiditis and papillary thyroid carcinomas. Int J Surg Pathol. 2002;10:15–22.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev. 2001;22:631–56.

    Article  CAS  PubMed  Google Scholar 

  28. Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17:2613–8.

    Article  CAS  PubMed  Google Scholar 

  29. Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E. Non‐coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer. 2013;133:267–74.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 2014;110:164–71.

    Article  CAS  PubMed  Google Scholar 

  31. Wang F, Yuan JH, Wang SB, Yang F, Yuan SX, Ye C, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell‐like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology. 2014;60:1278–90.

    Article  CAS  PubMed  Google Scholar 

  32. Khoo ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin d1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2002;87:1814–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kong R. Zhang E-b, Yin D-d, You L-h, Xu T-p, Chen W-m, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer. 2015;14:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mansourian AR. TSHR as a cornerstone for thyroid abnormalities. Pak J Biol Sci. 2011;14:170–81.

    Article  CAS  PubMed  Google Scholar 

  35. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8:286–98.

    Article  CAS  PubMed  Google Scholar 

  37. Esposito F, Tornincasa M, Pallante P, Federico A, Borbone E, Pierantoni GM, et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab. 2012;97:E710–8.

    Article  CAS  PubMed  Google Scholar 

  38. Friedman JM, Liang G, Liu C-C, Wolff EM, Tsai YC, Ye W, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69:2623–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiadong Wang.

Additional information

Qinyi Zhou and Jun Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Chen, J., Feng, J. et al. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumor Biol. 37, 3105–3113 (2016). https://doi.org/10.1007/s13277-015-4149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4149-9

Keywords

Navigation